Vol. 2

KEEI ISSUE PAPER

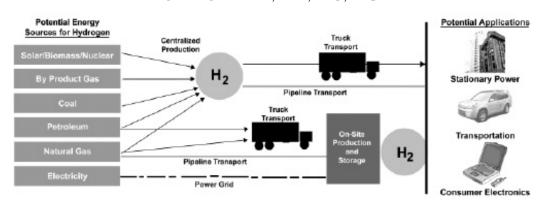
No. 5 2008. 2. 29

Contents

- 1. 수소경제에의 시스템적 접근 / 3
- 2. 수소 수요량 및 공급량 산정 / 4
- 3. 단계별 목표설정 및 목표달성을 위한 최적 시스템 구축 / 7
- 4. 수소운송 최적화 모형 / 11
- 5. 정책적 시사점 / 19

KEEI ISSUE PAPER

수소경제 도래에 대비한 수소공급의 시스템적 접근


부경진·조상민 (에너지경제연구원)

요 약

- 수소는 제조, 저장, 운송 등의 복잡한 단계를 거쳐 이용되므로 수소의 제조분야부터 이용분야에 이르기까지의 전 과정에 걸친 시스템적인 접근을 통하여 비용효과적인 수소경제 인프라를 구축할 필요가 있음.
 - 본고에서는 수소수요량이 가장 많고, 도입시기가 빠를 것으로 예상되는 수송부문을 대상으로 최적 수소운송시스템을 구축하고자 하였음.
- 수소제조를 제조 장소의 관점에서 분류하면 대규모의 수소 제조공장에서 생산하는 집중형과 수소의 이용 현장에서 생산하는 분산형으로 구분됨.
 - 집중형으로 생산한 수소는 파이프라인, 튜브트레일러 등의 운송수단을 통해 수소충전소와 같은 수요처로 이동
 - 분산형 수소제조에서는 수소의 제조 원료가 운송되며 수소운송은 발생하지 않음.
- 다수의 수소공급지에서 다양한 수소수요처로의 최적 수소운송을 위해서는 지역별 수소수요량과 지역별, 제조원별 수소공급량에 대한 추정이 필요하므로, 전국을 248개의 시군구 단위로 세분하고 지역별 수소수요량을 산정하였음.
 - 특히 수소 공급 시스템의 이행과정을 클러스터화와 집중화로 구분하여 이 둘의 유기적 성장을 통한 수소 공급 시스템의 구축과정을 제시.
- 수소운송시스템의 최적화모형은 선형계획법의 일종인 수송계획법을 이용하여 구축함.
 - 수송계획법은 다수의 공급지에서 다수의 수요처로 제품을 수송하는 경우에 총 수송비용을 최소 화하는 방안을 도출하는데 적합한 최적화기법
 - 수송계획법을 이용한 최적 수소운송시스템 구축방안은 상용화된 최적화 프로그램인 LINGO를 이용하여 도출함

1. 수소경제에의 시스템적 접근

- 우리가 수소경제에서 시스템적 접근을 하는 이유는 수소경제를 하나의 시스템으로 보고, 시스템 구성요소의 전체에 대한 기여도, 개별 구성요소 사이의 상호작용 및 전체에 미치는 영향에 대한 심층적 이해를 하고자 하는 것임.
 - 이를 통해 수소의 제조와 저장, 이용기술의 개발과 도입에 대한 방향설정과 중점 추진분야, 지원 정책의 수립에 도움을 줄 수 있음.
 - 이는 수소경제 이행 추진 활동 즉, 우리에게 주어진 인적, 물적 자원의 균형잡힌 포트폴리오에 대한 정책을 개발하고 전개하는 데 기여
- 수소경제 시스템 분석의 시작은 수소의 제조원으로서 석유, 석탄, 천연가스와 같은 자원의 종류와 양에 대한 자원평가, 그리고 기술적 타당성과 비용분석, 환경편익의 측정, 운반 및 저장 시스템의 분석 등 일련의 인프라 개발 및 구축으로 이루어짐.
- 아래 [그림 1]은 수소제조와 운반, 저장, 이용에 이르는 수많은 여러 가지 단계 가운데 하나의 예를 보여주는 것인데 정책 입안자나 업계, 소비자 등 이해 당사자들이 수소경제로의 이행에서 고려해야 할 사항들임.

[그림 1] 수소제조, 운반, 저장, 이용

● 수소경제로의 이행에서 구축되어야 할 가능한 인프라의 다양한 시나리오는 시간이 지남에 따라 그리고 연구가 진행됨에 따라 비효율적이라고 평가되는 시나리오가 고려 대상에서 제외됨으로써 몇

개의 유력한 대안으로 좁혀질 것임.

- 그러나 결국 이러한 인프라 경로 중 하나만이 모든 분야에서 채택될 것이고, 이용환경과 지역적 특성에 따라 상이한 인프라 구축이 이루어질 것임.

〈표 1〉 수소경제 시스템 분석 형태

분 야	분 석 형 태	분 석 대 상
지원분석	• 수소제조원의 종류와 제조원별 지원량은? • 제조원별 제조비용은?	석유·석탄, 천연가스, 원자력, 신재생-세계/지역
기술타당성 비용분석	• 경제적 잠재력이 가장 큰 기술은? • 중점 연구개발 분이는? • 생산규모의 영향은(규모의 경제)?	FCV 효율 및 성능 모델링 차량비용 모델링, 제조원 공급/비용, H2배분옵션
환견영향 분석	수소기술의 환경영향은? 환경영향을 줄이기 위해 필요한 조치는?	WTW GHG 및 기준배출량, 대체치량의 환경영향
운반시스템 분석	• 수소운반의 가장 경제적 옵션은? • 수소운반 옵션별 비용은?	GIS분석, 인프라 요구 및 옵션
 인프라 구축 및 재 무분 석	• 수소인프라 구축의 최적 시나리오는? • 인프라구축 시나리오별 비용과 재무리스크는?	산업기준의 복잡 적응 시스템
에너지 시장 분석	가장 타당성이 높은 수소미래의 비전은? 미래핵심가술? 기타 에너지캐리어와의 관계? 수송부문과 설치형 FC 시장의 수소시나리오는? 수소경제의 영향과 비용, 재무리스크는? 예상되는 시장보급시나리오는?	다양한 기술 및 경제적 가정하의 수소수요량 추정, 시장보급률, 시범차량 보급대수, 시장행태예측 모델 개발 등

2. 수소 수요량 및 공급량 산정

가. 수소 수요량

- 시장점유율을 바탕으로 산정한 연료전지 자동차 등록대수와 차종별 연평균 수소 사용량을 이용하여 수송부문의 연간 수소 사용량을 산정하였음.
 - 확산모형을 이용하여 수소수요량 및 에너지 대체량. 연료전지 보급량을 산정
 - 현재 여러 가지 확산모형이 존재하지만 이들 중 비교적 새로운 제품과 비교적 성숙된 기술 간의 차이를 잘 설명하여 기술 확산 속도를 예측하는 방법으로 잘 알려진 Lawrence-Lawton 확산모 형을 이용

- 연료전지 시장도입 시기는 2015년으로, 연료전지의 5% 시장점유 시기를 2031년으로 설정
 - Collantes(2006)의 연구결과를 인용
 - 연료전지 자동차의 시장확산을 예측하기 위해 미국의 연료전지 관련 전문가를 대상으로 연료전 지 자동차의 시장도입 시기 및 점유율 5% 도달시기에 대해 설문
- 수소수요량은 2015년 1,600톤으로 시작하여 2040년에는 전년대비 15% 증가한 777만톤에 이를 것으로 분석됨.
 - 수소 수요량은 2015년 약 1,600톤을 시작으로 2020년 2.8만톤, 2030년 82.4만톤에 이를 전망이고 임계량에 도달하는 2031년부터 수소 수요량이 크게 증가하기 시작하여 2040년에는 777만톤에 이를 것으로 예측됨.
 - 이 중 수송부문의 수요량이 355만톤으로 45.6%를 차지하는 것으로 나타났고, 산업부문의 수요량이 217만톤, 상업부문의 수요량이 170만톤, 가정부문의 수요량이 36만톤으로 나타남.

〈표 2〉 수소수요량 전망

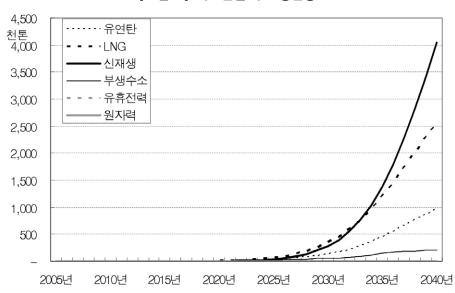
(단위 : 천톤)

구분	2010년		2020년		2030년		2040년	
부 문	비중	양	비중	양	비중	양	비중	양
· 산 업	0.0%	0	33.9%	10	35.4%	292	28.0%	2,174
 수 송	0.0%	0	42.7%	12	40.0%	330	45.6%	3,545
 가 정	0.0%	0	5.2%	1	3.9%	32	4.6%	355
상 업	0.0%	0	18.1%	5	20.7%	170	21.8%	1,696
합 계	0.0%	0	100%	28	100%	824	100%	7,769

나. 수소제조원별 수소공급량

- 수소제조원별 수소공급량을 도출하기 위해 우선 AHP를 이용하여 수소제조원 최적믹스를 분석함
 - 제1계층은 경제성, 기술성, 시장성, 파급효과로 구분

5


- 제2계층의 세부특성은 투자비 규모, 공급원가, 투자회수(回收), 수소제조 우수성 등 15개 하위특성으로 구성
- AHP 분석결과를 기반으로 수소제조원별 수소 공급 잠재량을 고려하여 수소제조원 믹스를 조정하는 과정을 거쳐 합리적인 믹스를 도출하였고. 이를 바탕으로 수소제조원별 수소생산량을 산출함 〈표 3〉.

〈 出 3〉	수소제소원	믹스

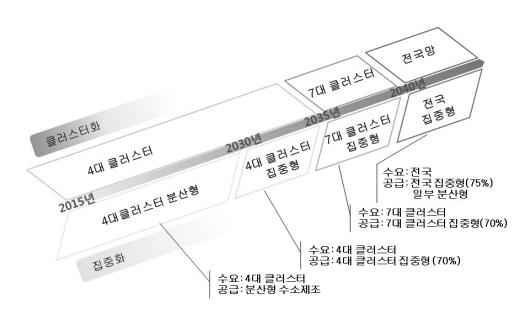
구분	2010년	2020년	2030년	2040년
 석 탄	18.0%	16.0%	15.5%	12,6%
LNG	48.0%	46.0%	43.0%	32,7%
 신 · 재생	0.0%	16.0%	35.1%	52,1%
부생수소	30.0%	22.0%	6.4%	2,6%
여유전력	4.0%	0.0%	0.0%	0.0%
 원자력	0.0%	0.0%	0.0%	0.0%
 합 계	100%	100%	100%	100%

- 초기에는 천연가스, 부생수소의 비중이 높을 것으로 전망되고, 천연가스를 이용한 수소제조는 꾸준히 높은 비중을 보일 것으로 예상되나 부생수소는 잠재량의 한계로 인해 비중이 계속해서 감소할 것으로 전망됨.
 - 석탄 수소의 경우에는 비중이 조금씩 감소할 것으로 판단되나 중요한 수소제조원으로서의 역할 은 유지할 것으로 전망됨.
 - 신·재생에너지를 이용한 수소제조는 2020년 이전까지 기술적인 문제와 생산 비용의 문제로 인해 비중이 높아지기는 힘들 것으로 판단됨.
 - 기술이 완성단계에 오르고 대량생산이 가능해지는 2030년 이후부터 비중이 크게 증가할 것으로 예상됨.
- 2040년을 기준으로 살펴보면 신·재생에너지에 의한 수소생산량이 405만톤으로 가장 많을 것으로 분석되며 다음으로 천연가스로부터 생산되는 수소량이 254만톤, 석탄수소가 98만톤, 부생수소는 20만톤에 이를 전망.

- 비교적 도입 초기 단계인 2032년까지는 천연가스에 의한 수소 생산량이 가장 많음.
- 2033년부터 신·재생에너지를 이용한 수소 생산량이 이를 앞지르게 되어 청정 수소 생산 체제로의 전환이 이루어질 것으로 예상됨.

[그림 2] 제조원별 수소생산량

● 수소제조원 중 석탄으로부터 생산된 수소와 부생수소는 그 특성상 집중형으로 공급해야만 할 것이고 천연가스, 신·재생에너지를 이용하여 생산하는 수소는 집중형과 분산형 2가지 방식 모두가 적용 가능할 것으로 판단됨.


3. 단계별 목표설정 및 목표달성을 위한 최적 시스템 구축

- 수소 · 연료전지가 경제성 및 안전성을 확보해 나갈수록 수소에 대한 수요는 증대되고 이러한 수요 에 맞추어 공급도 증가하게 될 것임.
 - 수소 수요가 적은 시기 또는 적은 장소에는 분산형 수소 공급 체계가 적합할 것이며.
 - 수소 수요가 많은 시기 또는 많은 장소에는 집중형 수소 공급 체계가 경제성이 뛰어날 것임.

- 이러한 점들을 감안할 때 이행단계에 맞추어 적절한 수소 수급 시스템을 설계하는 것은 매우 중요함. 본고에서는 수소 수요 · 공급 시스템 구축의 기본방향을 클러스터화와 집중화로 구분하였음.
 - 클러스터화와 집중화는 서로 영향을 주고받으며 유기적으로 성장 · 변화해 나갈 것임.
 - 즉 클러스터화가 진행되면 이들 클러스터를 중심으로 집중화가 시작될 것이며, 집중화를 통해 수소의 대량 공급이 가능해지면 이것이 또 다른 클러스터의 형성을 촉진시킬 것임.
- 클러스터는 수소 수요 및 지역배분을 고려하여 선정함.
 - 초기 단계에는 수도권 클러스터, 대전·충남권 클러스터, 부산·울산권 클러스터, 광주·전남권 클러스터의 총 4대 클러스터가 구축될 것으로 전망됨.
 - 이들 4대 클러스터를 통해 수소경제 이행으로의 기틀을 마련하게 되면 총 3개의 클러스터가 추 가되어 7대 클러스터가 형성될 것으로 전망
 - 추가되는 3개의 클러스터는 영서·경기동부권 클러스터, 대구·경북권 클러스터, 전북권 클러스터 스터로 선정.
- 집중화의 경우, 현재의 천연가스 배관망 구축 현황을 살펴보고 이를 바탕으로 집중형 수소 공급 지역과 분산형 수소 공급 지역을 구분함.
 - 우리나라 248개 시군구 중 대부분의 지역은 집중형 수소 공급이 가능할 것으로 예상됨.
 - 우리나라는 국토가 좁고 인구가 밀집되어 있기 때문에 집중형 수소 공급 시스템 구축에 유리한 조건을 가지고 있기 때문임.
 - 하지만 산간지역과 도서지역 등 일부 지역의 경우 지역 여건상 집중형 수소 공급이 불가능할 것으로 보임.
- 본 연구에서는 수소수요량, 지형적 장애요인, 인프라구축 비용 등을 고려하여 태백산맥 지역, 지리산·덕유산 지역, 도서·낙후지역, 기타지역의 4대 지역을 분산형 공급 지역으로 선정하고, 그 외지역을 집중형 수소 공급 지역으로 구분함.
- 이와 같이 분석한 클러스터화와 집중화를 바탕으로 수소 수급 시스템 이행 단계를 설정함.
- 수소 수급 시스템 이행 단계는 2040년까지 총 4단계로 구분하였으며 1단계는 2030년까지 4대클러스터 · 분산형 단계, 2단계는 2035년까지 4대클러스터 · 집중형 단계, 3단계는 7대클러스터 · 집중

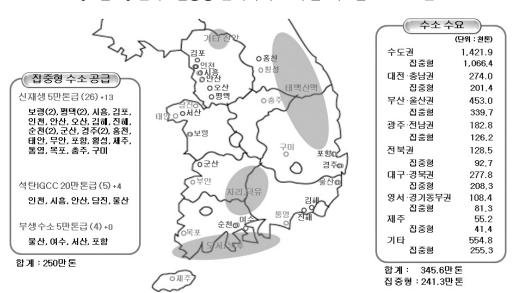
형 단계, 4단계는 전국 · 집중형 단계임 [그림 3].

- 클러스터화는 1단계부터 진행되어 2040년 전국적 수급 시스템이 구축되면서 그 역할을 다할 것으로 예상되며 집중화는 수소 수요가 적정 수준에 오른 2030년 이후부터 가능할 것으로 전망됨.
- 집중화 단계에서도 분산형 공급 시스템은 일부 그 역할을 유지할 것으로 판단됨.

[그림 3] 수소 수급 시스템 이행 단계

- 다음으로는 이렇게 설정한 수소 수급 시스템 이행 단계별로 수소 수요량을 분석함.
 - 이를 위해서는 수소 수요지별 수요량을 파악하고 이를 공급하기 위한 방안을 수립해야 함.
 - 수소 수요지별 수소 수요량은 지역별 자동차 등록대수 비중이 지역별 수소 충전량 비중과 일치 한다고 가정하여 산정하고 이후 이를 클러스터화 단계에 맞추어 재산정함.
- 이러한 수요에 대응하기 위해 수소를 생산하여 공급하기 위한 방안에는 분산형과 집중형이 있으며 본고에서는 특히 집중형 수소 공급 시스템에 초점을 맞추고 있음. 집중형 수소 생산 설비로는 총 3 가지 형태를 고려
 - 첫 번째는 연 5만톤 생산규모의 신·재생에너지 수소 생산 설비(A)이며, 두 번째는 연 20만톤 생산규모의 석탄 수소 생산설비(B), 세 번째는 연 5만톤 규모의 부생수소 생산설비(C)임.

● 다음으로 주요 수요지와의 이격도, 지역별 수소 생산 잠재량, 사회적 수용성이나 토지 비용 등의 요소를 고려하여 각 클러스터별로 배정된 수소 생산 설비를 지역별로 배치함 〈표 4〉.


〈표 4〉 집중형 수소 생산 설비 도입 계획

구분	2015년	2020년	2025년	2030년	2035년	2040년
				B 인천		
수도권					A 평택, 시흥, 김포, 인천, 연	안산, 오산
						B 시흥, 안산, 당진
				A 보령		
대전 · 충남					C 서산	
						A 보령, 태안
				C 울산		
부산 · 울산					A 김해, 진해	
-						B 울산
				C 여수		
광주 · 전남					A 순천	
						A 순천
전북					A 군산	
						A 부안
대구·경북					A 경주, C 포항	
-11 6-1						A 경주, 포항
영서 · 경기동부					A 홍천	
						A 횡성
제주						A 제주
기타 						A 통영, 목포, 충주, 춘천, 구미

주 : (A) 5만톤급 신·재생에너지 수소 생산설비, (B) 20만톤급 석탄 수소 생산설비, (C) 5만톤급 부생수소 생산설비

- 앞서 분석한 수소 수요전망. 설비 도입 계획을 바탕으로 수소 경제 이행 단계별 수급 시스템을 구축함.
 - 1, 2, 3단계는 클러스터화와 집중화가 진행되는 단계임. 본고에서는 1, 2, 3단계의 최적화 모형은 수립하지 않음.
 - 최적화 모형의 분석 대상인 4단계를 살펴보면, 4단계는 전국 집중형 단계로 수소 수요가 크게 증가하여 기존의 클러스터를 폐기하고 전국에 걸친 수소 공급이 이루어지는 단계임 [그림 4].
 - 2040년 기준 총 345.6만톤의 수소 수요 중 241.3만톤을 집중형으로 공급해야 할 것으로 예상됨.

- 3단계 18개소의 집중형 수소 생산 설비에 17개소의 설비가 추가되어 총 35개소의 집중형 수소 생산 설비가 가동되고 이를 통해 총 250만톤의 수소 공급 용량을 확보하게 될 전망임.

[그림 4] 전국·집중형 단계의 수소 수급 시스템 - 2040년

4. 수소운송 최적화 모형

가. 모형수립

- 수소운송 최적화모형을 통해 공급지별 수소공급량, 수요처별 수소수요량, 각 공급지에서 모든 수요 처로의 단위당 수소 운송비용 등을 입력 자료로 하여 모든 공급지에서 모든 수요처로의 수소 운송비 용을 최소화하는 운송계획을 수립함.
- 수소운송시스템의 최적화모형은 선형계획법의 일종인 수송계획법을 이용하여 구축함.
 - 수송계획법은 다수의 공급지에서 다수의 수요처로 제품을 수송하는 경우에 총 수송비용을 최소 화하는 방안을 도출하는 데 적합한 최적화기법임.
- 수송문제는 제조공장들의 공급량과 수요처들의 수요량에 대한 제약조건들을 모두 만족시키면서 총 수송비를 최소화하는 일정계획(schedule)을 수립하는 것임.

- 수송문제에서는 공급지에서 수요지로의 수송비가 수송량에 비례한다는 가정 하에 총 수송비를
 최소화하는 일정계획을 수립함.
- 수송문제는 선형계획법(linear programming: LP) 문제의 특수 사례로서 심플렉스(simplex) 등의 정규 해법을 이용하여 최적해를 구할 수도 있으나, 일반적인 해법은 수송문제의 특수성을 고려한 수송 심플렉스법으로 최적해를 도출함.
- 수송문제에서는 총 공급량이 총 수요량과 같은 경우에 균형 수송모형(balanced transportation model)이라 부름.
- 만약 총 공급량이 총 수요량보다 크면 가상의(dummy) 수요처를 추가하고, 총 공급량이 총 수요 량보다 작으면 가상의 공급처를 추가하여 균형 수송모형으로 변환할 수 있음.
- 이러한 수소 운송문제는 [그림 5]의 네트워크 형태로 표현할 수 있음.

[그림 5] 수소 운송문제의 네트워크 표현

나. 입력 데이터

1) 수요처별 수소 수요량

- 수소운송 최적화모형의 입력 자료는 공급지별 수요처별 수소수요량, 수소공급량, 각 공급지에서 모든 수요처로의 단위당 수소 운송비용 등임.
- 수송부문의 집중형 수소수요량은 2030년의 225천톤에서 2040년에는 2.413천톤으로 크게 증가될

전망임 〈표 5〉.

- 2030년에는 수도권 등 4개 클러스터를 대상으로 집중형으로 생산된 수소를 공급.
- 2040년에는 전국을 대상으로 하여 집중형으로 수소공급을 할 수 있는 정도의 수소수요가 있는 것으로 예측됨.

〈표 5〉 권역별 연도별 집중형 수소수요량

(단위: 천 톤)

구 분	2030년	2035년	2040년
	225,1	920.6	2,412.9
- 수도권	139,5	463,9	1,066.4
— 대전 · 충남권	25.8	87.6	201,1
- 부산 · 울산권	43.6	147.8	339.4
	16,2	54.9	126,2
- 전북권	-	40.3	92.7
— - 대구 · 경북권	-	90.6	208,3
	-	35.4	81,3
– 제 주	-	-	41.4
- 기 타	-	-	255,3
2. 분산형 수소수요량	104,8	427,2	1,132.3
3. 수송부문 수소수요량	329,9	1,347.8	3,545.2

2) 공급지별 수소공급량

- 본 연구에서는 전국적인 수소파이프라인이 건설되는 2040년을 대상으로 수소운송 최적화방안을 수립하며, 각 지역별 집중형 수소수요량과 에너지원별 공급 잠재량을 감안하여 〈표 6〉과 같은 집중 형 수소공급계획을 수립함.
- 〈표 6〉을 보면 2040년의 집중형 수소 생산용량은 총 2,500천톤이며 석탄은 5기의 20만톤, 신재생은 26기의 5만톤, 부생수소는 4기의 5만톤의 수소 공급용량을 갖는 것으로 계획함.
 - 수도권과 강원도의 2040년 수소공급용량은 1,050천톤이고 수소수요량은 1,172천톤으로, 부족한 수소수요는 충청남도에 소재한 당진 등의 수소생산 공장에서 공급하는 것으로 계획함.

〈표 6〉 지역별 제조원별 집중형 수소공급계획(2040년)

시 도	에너지원	공 급 지	공급용량 (천톤)	수요량 (천톤)
	석 탄	인천,시흥,안산	1,050	1,171.5
강원도	신재생	평택, 시흥, 김포, 인천, 안산, 오산, 홍천, 횡성, 춘천	1,030	1,171.5
	석 탄	당진		
충청도&대전	신재생	보령(2),태안,충주	450	286.8
	부생	서산		
저리匚 오 과지	신재생	순천(2),목포,군산,부안	300	254.9
건니프었당구	전라도&광주 부 생 여수	300	204,9	
	신재생	경주(2),포항,구미	250	258.9
04Q4II	부 생	포항	250	250,9
	석 탄	울산		
경남&부산&울산	신재생	김해,진해,통영	400	399.4
	부생	울산		
제 주	신재생	제주	50	41.4
합계	_	-	2,500	2,412.9

3) 단위당 수소 운송비용

- DOE(2006)는 수소공급지를 지역별로 안배하여 수소 운송거리를 줄이고 파이프라인의 초기 투자비를 감소시켜 2017년까지 현장 비용을 포함한 수소 저장 및 운송비용을 \$1.0/gge로 감축하는 목표를 제시한 바 있음.
 - 액회수소를 트럭에 의해 수송하거나 튜브 트레일러에 의해 수송하는 방식은 이러한 비용 목표를 달성할 수 없으므로 집중형으로 대량 생산된 수소는 파이프라인을 통하여 수소충전소에 공급하 는 것으로 설정.
 - Hawkins(2006)에 의하면 파이프라인에 의한 수소 운송비용은 운송물량과 운송거리 등에 따라 차이가 있으나 \$1,0/ton-km ~ \$10/ton-km로 추정되고 있음.
- 본 연구에서는 이러한 수소 저장 및 운송비용 목표와 현재의 파이프라인에 의한 수소 운송비용을 고려하여, 2020년 이후의 파이프라인에 의한 단위당 수소 운송비용을 \$5/ton-km로 추정함.
 - 이러한 파이프라인 수소 운송비용을 적용하면, 수소공급지에서 수소수요처로의 수소 운송거리 가 100km일 때 파이프라인에 의한 수소 운송비용은 \$0.5/kgH2가 됨.

- 수소 파이프라인 공급망은 천연가스 공급망과 유사한 구조를 가질 것으로 전망되므로, 각 수소공급지에 서 전국의 각 시군구까지의 수소 운송거리는 국내 천연가스 공급망을 기준한 거리를 이용하여 계산함.
 - 또한, 동일한 시군구로 수소를 공급하는 경우의 수소 운송거리는 3~5km를 기준으로 함.
 - 수소공급지 i에서 수소수요지 i로의 파이프라인이 없거나 운송거리가 400km 이상인 경우에는 수소공급지 i에서 수소수요지 j로의 수소 운송비용(cij)을 big-M으로 설정함.
 - 여기서 수소공급지 i에서 수소수요지 j로의 수소 운송비용이 big-M이면 공급지 i에서 수요지 j 로의 수소 운송이 불가능한 것을 의미함.

다. 분석결과

1) 권역별 수소운송량

- 수소운송 최적화모형에서는 수요처별 수소수요량. 공급지별 수소공급량. 각 공급지에서 모든 수요 처로의 단위당 수소 운송비용 등을 입력 자료로 하여. 모든 공급지에서 모든 수요처로의 수소 운송 비용을 최소화하는 운송계획을 수립함.
- 2040년 집중형 수소공급지의 수는 31개이고 수소수요지인 시군구의 수는 199개임.
- LINGO 프로그램의 용량상의 제약으로 인하여 수소 파이프라인 공급망을 서울, 인천, 경기도, 강원 도. 대전. 충청북도. 충청남도를 대상으로 하는 북부 네트워크와 광주. 전라북도. 전라남도. 대구. 경 상북도, 부산, 울산, 경상남도 등을 대상으로 하는 남부 네트워크로 구분함.
 - 북부 네트워크는 17개의 수소공급지와 112개의 수소수요지로 구성되며, 남부 네트워크는 14개의 수소공급지와 85개의 수소수요지로 구성
 - 제주는 별도의 네트워크로 분리하여 제주는 1개의 수소공급지와 2개의 수소수요지로 구성.
- LINGO 프로그램에 의해 각 수소 파이프라인 네트워크를 대상으로 모든 수소공급지에서 수소수요 지로의 최적 수소운송량을 산출함.
 - 실제 분석은 모든 수소공급지에 모든 수소수요지(시군구)로의 최적 수소운송량을 분석함.
 - 지면의 한계로 시군구별 최적 수소운송량은 생략하고 권역별로 정리한 결과만 제시함.

- 〈표 7〉은 모든 수소공급지에 수소수요지로의 최적 수소운송량을 권역별로 정리한 결과임.
 - 수도권과 강원도는 1,050천톤의 생산용량 중에서 1,015천톤의 수소를 생산하여 자체권역에서 모두 소비하는 것으로 나타났음.
 - 충청도와 대전은 444천톤의 수소를 생산하여 287천톤은 자체권역에서 소비하고 157천톤은 수도권으로 운송하는 것으로 분석됨.
 - 전라도와 광주는 300천톤의 생산용량 중에서 265천톤의 수소를 생산하여 255천톤은 자체권역에서 소비하고 10천톤은 경상남도로 운송하는 것으로 분석됨.
 - 경상북도와 대구는 250천톤의 수소를 생산하여 모두 자체권역에서 소비하는 것으로 나타남.
 - 부산, 울산, 경상남도는 398천톤의 수소를 생산하여 389천톤은 자체권역에서 소비하고 9천톤은 경상북도로 운송하는 것으로 분석됨.

〈표 7〉 권역별 수소운송량

(단위: 천톤)

수요지 공급지	1	2	3	4	5	6	공급량	공급 용량
1. 수도권+강원도	1,015	_	_	_	_	_	1,015	1,050
2. 충청도+대전	157	287	-	-	-	-	444	450
3. 전라도+광주	-	-	255	-	10	-	265	300
4. 경 북+ 대구	_	_	_	250	_	_	250	250
5. 경남+부산+울산	_	_	_	9	389	_	398	400
6. 제주	_	_	_	_	_	41	41	50
수 요 량	1,172	287	255	259	398	41	2,413	2,500

2) 공급지별 수소운송량 및 평균 수소운송거리

- 북부 네트워크의 각 수소공급지에서 수소수요지로의 최적 수소운송량과 평균 수소운송거리를 시도 별로 정리한 결과를 〈표 8〉에 수록함.
 - 북부 네트워크의 수소 공급용량은 연간 150만톤이고, 실제 공급량은 북부 네트워크의 총 수소수 요량인 145.8만톤임.

- 춘천과 태안을 제외한 모든 수소공급지는 수소 공급용량을 모두 활용하나, 태안은 5만톤의 수소 공급용량 중에서 43,350톤의 수소를 생산하고 춘천은 공급용량의 약 30%인 14,970톤의 수소만을 생산하는 것으로 나타남.
- 그리고 수도권과 강원도에 소재한 모든 수소공급지는 생산된 수소 전량을 수도권과 강원도 지역으로 운송하나 당진, 태안, 서산 등의 충청남도에 소재한 수소공급지에서는 약 15.7만톤의 수소를 서울과 경기도 지역으로 운송하는 것으로 나타남.
- 북부 네트워크의 평균 수소운송거리는 약 44km인 것으로 분석됨.

〈표 8〉 지역별 수소운송량 및 평균 수소운송거리(북부 네트워크)

(단위: 천톤(km))

(년귀· 신근(K								· LL(KIII//		
공급지	수요지	서울	인천	경기	강원	대전	충북	충남	공급량 (평균 운송거리)	공급 용량
1	인천	32,38 (35,18)	112,1 (11,35)	55.51 (33,24)	_	_	_	_	200 (21,29)	200
2	샤흥	154.13 (30.32)	_	45,87 (8,80)	_	-	_	-	200 (25,21)	200
3	안산	97.14 (40.52)	1,27 (27,80)	101.59 (20.88)	_	_	_	-	200 (30,47)	200
4	평택	-	-	50 (15.30)	-	_	_	-	50 (15.30)	50
5	시흥	32.05 (46.52)	_	17.95 (51.90)	-	_	_	-	50 (48.45)	50
6	김포	_	-	50 (17.31)	_	_	_	-	50 (17.31)	50
7	인천	25.39 (25.14)	20.65 (20.96)	3,96 (85,20)	_	_	_	-	50 (28.17)	50
8	안산	28.74 (38.35)	-	21,26 (38,21)	_	_	_	_	50 (38.29)	50
9	오산	_	-	50 (25,83)	_	_	_	-	50 (25.83)	50
10	홍천	_	-	32,13 (120,37)	17.87 (33.60)	_	_	-	50 (89.36)	50
11	횡성	_	_	41.13 (77.21)	8.87 (17.60)	_	_	_	50 (66.64)	50
12	춘천	_	-	_	14.97 (3.00)	_	_	-	14.97 (3.00)	50
13	당진	32,21 (101,28)	-	84.08 (71.70)	_	_	28.51 (95.53)	55,2 (39,74)	200 (71.04)	200
14	보령	_	-	_	_	67.43 (96.12)	3,37 (142,00)	29,2 (42,05)	100 (81.88)	100
15	태안	17.29 (134.70)	_	_	_	11.87 (146.50)	_	14.19 (13.22)	43.35 (98.17)	50
16	충주	_	_	_	_	_	50 (39.81)	_	50 (39.82)	50
17	서산	-	_	22.99 (94.83)	_	-	3,56 (146,60)	23.45 (60.43)	50 (82,38)	50
<u></u>	-요량	419.33	134.03	576,47	41.71	79.3	85,44	122.04	1458,32(44,34)	1500

- 마찬가지로 남부 네트워크의 각 수소공급지에서 모든 수소수요지로의 최적 수소운송량과 평균 수소 운송거리를 시도별로 정리한 결과를 다음 〈표 9〉에 수록함.
 - 남부 네트워크의 수소운송 특징은 해당 클러스터에서 생산된 수소를 자체 소비하는 형태를 보이고 있음.
 - 단, 전라남도 순천에서 생산된 10,220톤의 수소는 경상남도로 운송, 울산에서 생산된 8,850톤의 수소는 경상북도로 운송되는 것으로 나타남.
 - 또한, 여수는 5만톤의 수소 생산용량 중에서 30.3%에 해당하는 15,140톤의 수소를 생산하여 경상남도 지역으로 운송하는 것으로 분석됨.
- 남부 네트워크의 평균 수소운송거리는 약 42km로서 북부 네트워크의 평균 운송거리보다 약 2km가 짧음.

〈표 9〉 지역별 수소운송량 및 평균 수소운송거리(남부 네트워크)

(단위: 천톤(km))

공급지	수요지	광주	전북	전남	대구	경북	부산	울산	경남	공급량 (평균 운송거리)	공급 용량
18	순천	50.92 (81.57)	2.41 (75.10)	36.45 (28.35)	_	_	_	_	10,22 (62,11)	100 (60.03)	100
19	목포	20.34 (66.72)		29.66 (27.58)	_	_	_	_	_	50 (43.50)	50
20	군산	_	50 (24.42)		_	_	_	_	_	50 (24.42)	50
21	부안	_	46.61 (32.40)	3,39 (58,80)	_	_	_	_	_	50 (34.18)	50
22	여수	_	_	15.14 (3.00)	_	_	_	_	_	15.14 (3.00)	50
23	경주	_	_	_	70.24 (73.52)	29.76 (14.24)	_	_	_	100 (55.88)	100
24	포항	_	_	_	19.55 (84.86)	30,45 (3,79)	_	_	-	50 (35.49)	50
25	구미	_	_	_	14.90 (51.77)	35.1 (13.48)	_	_	_	50 (24.89)	50
26	포항	_	_	_	32.14 (77.42)	17.86 (56.90)	_	_	_	50 (70.09)	50
27	울산	_	_	_	_	8,85 (82,93)	107.48 (57.19)	59.45 (5.52)	24.22 (61.30)	200 (43.47)	200
28	김해	_	_	_	_	_	5,24 (9,90)	_	44.76 (13.47)	50 (13.10)	50
29	진해	_	_	_	_	_	_	_	50 (15,23)	50 (15.23)	50
30	통영	_	_	_	_	_	_	_	50 (46.11)	50 (46.11)	50
31	울산	_	_	_	_	_	48 (58.15)	_	_	48 (58.15)	50
	수요량	71,26	99.02	84,64	136.83	122,02	160.72	59.45	179.20	913.14(42.13)	950

- 별도의 네트워크인 제주를 제외하면 전체 네트워크의 평균 수소운송거리는 약 43.5km인 것으로 나타남.
- 제주 지역을 제외한 평균 수소운송비용은 약 \$0,218/kgH2 정도인 것으로 추정됨.
 - 평균 수소운송거리인 43.5km에 파이프라인의 수소운반비용인 \$5/ton-km를 곱하여 집중형으로 생산된 수소의 평균 수소운송비용을 추정
 - 이는 각 시군구까지의 운송비용으로 최종 수요지(충전소)까지의 운송비용은 이보다 더 높을 것임

5. 정책적 시사점

- 첫째, 초기 수소 · 연료전지 시장도입을 위해서는 주요 수소 수요 발생 지역을 클러스터화 함으로써 수소경제 이행 초기 단계의 수요 및 공급을 특정 지역으로 집중화하여 비용효과적인 이행 체계를 구축하는 것이 필요할 것으로 판단됨.
- 둘째, 수소 수요량이 급격히 증가할 것으로 예상되는 2030년 이후에는 집중형 수소생산이 도입되고, 집중형으로 생산된 수소는 대부분이 수소 파이프라인을 통해 수소 수요처로 운송될 것으로 전망됨.
 - 따라서 집중형 수소제조시스템과 수소 파이프라인 운송시스템을 연계하여 분석하고 투자계획을 수립할 필요가 있음.
- 셋째, 에너지 안보, 기후변화, 에너지 가격 및 비용, 경제적 및 기술 사회적 파급효과, 사회적 수용성 등을 종합적으로 고려하여 수소도입에 따른 에너지믹스의 최적조합을 찾아내야 할 것임.
- 마지막으로, 수소경제로의 효율적 이행을 위한 시스템적 접근이 필요함.
 - 수소경제의 시스템적 접근을 통하여 수소의 제조, 저장, 운송, 이용 등의 단위 시스템을 유기적으로 결합하고 전체 시스템의 목표를 효율적이고 효과적으로 달성할 수 있음.
 - 따라서 우리나라도 국내 수소경제 시스템에 적합한 수소시스템 분석모형의 개발을 추진해야 할
 것임

발행인 : 방기열 / 편집인 : 이복재

Tel) 031-420-2210 Fax) 031-420-2164 http://www.keei.re.kr