정책 이슈페이퍼 14-19

에너지 부문 정보통신 융합의 전개구도와 영향

박찬국, 김현제, 유학식

목 차

- │. 배경 및 목적 / 1
- Ⅱ. 쪼사 및 분석 결과 / 3
- Ⅲ. 정책 제언 / 12
- Ⅳ. 기대 효과 / 15
- 〈참고자료〉 / 16

Ⅰ. 배경 및 목적

1. 연구 배경

- □ 21세기는 기술의 고도화를 넘어 ICT(Information and Communications Technology) 융합을 통해 새로운 가치를 창출하는 시대로 패러다임 변화
- ICT는 융합의 촉매제로 작용하여 새로운 제품과 서비스 창출에 기여
- ICT와 비ICT 가 경계가 허물어지면서 ICT 중심의 융합 역량이 미래 경쟁 력의 핵심으로 부상
- □ 에너지산업의 경쟁력이 부존자원 중심에서 기술력 중심으로 이동하고 있는 상황에서 에너지산업은 갈수록 ICT 융합을 거듭해 나갈 것으로 전망
 - 에너지원별(전력, 가스, 석유, 재생에너지 등), 에너지 생애주기별(생산-전달 -소비) ICT 융합으로 에너지시스템의 효율성, 안전성, 친환경성 제고
- 최근 원별로는 전력 및 재생에너지 분야에서, 생애주기별로는 전달과 소비 과정에서 에너지 지능화가 두드러지게 나타나고 있는 상황

□ 에너지 부문 ICT 융합은 에너지산업과 관련 정책의 대변화 촉진

- 스마트에너지로의 변화는 기술차원의 문제를 넘어 지능화로 인한 에너지산 업 가치사슬 변화, 소비자의 에너지시장 참여 확대, 다양한 이해관계자 출 현 등 사회·경제적 차원에서 포괄적으로 연구해야 할 문제로 확대
- 새로운 기술과 새로운 시장참여자의 유입에 따라 새로운 시장이 형성되고 산업구조가 변경

- 소비자는 단순한 에너지소비 주체가 아니라, 공급자에게 에너지소비 정보를 제공하고, 에너지 절약분 또는 직접 생산한 에너지를 시장에 판매하는 주체로 변모
- 전력 부문을 넘어, 석유, 가스, 재생에너지, 원자력 등 에너지 전 분야에 걸쳐 지능화를 통한 효율향상 및 기후변화 대응에 관한 여러 이해당사자 출현

2. 연구 필요성 및 목적

□ 연구 필요성

- 새로운 환경 변화에 능동적으로 대응하기 위해서는 에너지 부문 ICT 융합 의 구조와 파급영향에 대한 체계적 이해 필요
 - 에너지 부문의 ICT 융합의 전개구도와 파급영향을 분석하고 에너지 부문 창조경제 활성화를 위한 기초적 이론 기반 구축 필요
 - ICT 융합으로 변화하는 에너지 산업에 대응하는 정책과제 도출 필요

□ 연구 목적

- 에너지-ICT 융합의 구도와 영향을 체계적으로 제시하고, 융합으로 인한 파급영향들 간 관계를 보다 입체적으로 규명
 - 기존 연구들은 기술적으로 에너지에 정보통신기술이 활용되는 영역을 찾거 나, 융합으로 인한 특정 부문의 경제적 편익 검토에 초점
 - 본 연구에서는 에너지-ICT 융합의 개념, 전개구도, 파급영향, 전망 등을 종합적으로 살펴보고, 정책과제에 대한 논의의 폭 확대

Ⅱ. 조사 및 분석 결과

□ 에너지원별, 생애주기별 정보통신 융합

- 원별로는 전력 분야에서 ICT 융합이 활발히 이루어지고 있으며, 석유, 가 스분야에서도 전개
 - 전력산업 가치사슬 전 요소에서 IT기술을 적용해 효율성을 높이고, 재생 에너지와 전기자동차 보급을 촉진하는 스마트그리드 프로젝트가 전 세계 적으로 진행
 - 전력부문에서 추진되고 있는 스마트그리드 사업은 도시가스 분야의 스마 트가스그리드 사업 형태로 발전
 - 'Easy Oil'이 고갈되면서 석유·가스 채굴비용이 가파르게 상승하는 가운 데, 시뮬레이션, 센서·원격측정, 지진파 데이터 분석 등을 통해 생산성을 높이는 프로젝트가 석유메이저를 중심으로 활발히 진행
- 생애주기별로는 에너지 생산, 전달, 소비 전반에 걸쳐 생산성 확대, 안정성 제고, 효율성 향상 등을 위해 ICT 융합이 진행 중
 - 에너지자원 개발 부문에서 센서, 네트워크, 데이터 처리, 가시화(visualization), 패턴인식 등의 ICT를 통해 자원개발 탐사 및 시추의 생산성을 높이는 사 업이 대형 자원개발 기업 및 ICT 기업 중심으로 진행
 - 전력생산 과정에서는 광범위한 영역에서 전력시스템의 성능을 실시간으로 모니터링하고 제어하는 기술과 재생에너지 등의 분산발전의 생산성 제고 를 위한 빅데이터, 첨단 제어 솔루션, GIS 기술 등의 활용 증가
 - 에너지 전달에 있어서 에너지 네트워크의 손실 축소, 네트워크 이상 징후 발견과 손상 시 복원력 제고, 에너지 품질을 높이기 위한 저장장치 활용

및 효율성 향상 등에 ICT의 활용도 증가

- 에너지 소비에 있어서는 집이나 건물의 에너지 소비를 관리하고 점검하는 툴을 개발하고, 통제 알고리즘 기술력 향상에 집중

□ 유합 시대의 가치사슬 변화

- 현재 ICT를 중심으로 진행되는 거대한 융합의 흐름은 새로운 산업, 새로운 서비스, 새로운 가치를 창출해 가고 있는데, 그 양상을 짚어보면 가치사슬 의 역류, 다차원화, 삽입 및 제거의 형태로 요약
 - ※ 가치사슬은 Porter(1985)가 제시한 개념으로 고객에게 가치를 제공함에 있어 직·간접적으로 관련된 일련의 활동. 기능. 프로세스의 연계 의미
 - ※ 가치사슬은 본래 기업의 생산활동을 구분하기 위해 제안되었으나, 경영분야에서 널리 사용되면서 전체 산업 구조를 나타내는 개념으로 확장
 - 가치사슬의 역류는 가치사슬의 출발점이 제품이 아닌 고객으로부터 시작함 을 의미
 - · 기존의 가치사슬이 제품에서 출발하여 유통망을 거치고 고객에게 그 제품이 전달되면서 마무리되었다면, 융합시대의 가치사슬은 고객의 요구에서 시작하여 다시 고객의 만족으로 향하는 고리 형성
 - 가치사슬 다차원화는 새로운 가치 창출을 위해 기존 가치사슬의 해체 및 가치사슬 간 통합이 일어나고 가치사슬 내의 제품 및 정보의 전달 경로가 기존 경로를 넘어 보다 복잡한 형태로 변화하는 모습
 - · 다차원적이며 복잡해지는 상호작용은 다시 표준화된 플랫폼에 대한 수요 를 늘리고, 그 플랫폼 위에서 새로운 가치 창출 촉진
 - 가치사슬의 삽입은 새로운 가치를 제공하는 사업자 및 서비스가 등장하며 이에 따라 기존의 가치사슬이 재구성됨을 의미

- · 기존 기업들은 급격하게 변하는 융합 환경에 적응하기 위해 전략적 제휴 및 인수·합병 확대
- 가치사슬의 제거는 기존 가치사슬에서 고객에게 더 이상 가치를 전달하지 못하는 부분이 사라지게 되는 현상
 - 융합현상이 가속화되면서 이러한 변화 속도는 함께 빨라지게 되며, 사라 지는 가치사슬 고리들이 많아짐과 동시에 새로운 고리들이 그 자리를 대 체해 가는 가치사슬의 삽입 현상 발생

[그림 1] 융합시대의 가치사슬 변화

자료: 이각범 외, 2005 수정.

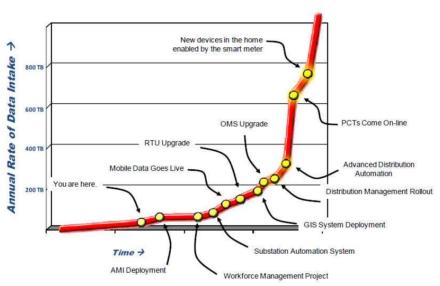
□ ICT 융합에 따른 에너지산업 변화

- 에너지 프로슈머 증가
 - 가치사슬의 역류에서 살펴보았듯이 가치의 전달이 일방향에서 다방향으로 전환되고, 소비자 요구로부터 가치창출이 시작되는 정도가 강해지고 있음.
 - 에너지소비자는 단순히 소비자에 머물지 않고 에너지 생산에 참여하는 프 로슈머(prosumer)로 변화

- · 프로슈머 에너지 시장이 가능해진 것은 블루투스, 와이파이, 4G, 3G 등의 다양한 프로토콜을 통해 다른 장치 또는 네트워크에 연결될 수 있는 지 능형 통신장비의 힘이 큼.
- · 스마트 장치와 더불어 전력회사들의 정전관리(outage management)를 돕는 차원에서 소셜 미디어의 활용도 예상보다 활발해지고 있고, 소비자들은 이러한 플랫폼을 통한 다양한 서비스 요구
- · 지능형 장치뿐만 아니라 스마트그리드 인프라 역시 프로슈머들의 에너지 시장 참여 촉진

○ 플랫폼의 영향력 증대

- 에너지와 정보를 다양한 방향으로 전달하는 스마트그리드는 앞으로 모든 참여자들 사이의 상호작용을 지원할 것이며, 이는 전력산업계의 다방향 플 랫폼 개발 촉진
- ※ 플랫폼(platform)은 둘 이상의 당사자 사이의 거래에 있어 표준이 되는 기반을 제공하는 일반적인 아키텍처(사용자들 간의 상호작용을 활성화하는 제품, 서비스, 인프라 디자인) 와 규칙(프로토콜, 권리, 가격책정 조건) 지칭
- 지금까지 에너지산업에서 제품의 전달은 완전히 물리적 과정이었기 때문에 에너지산업계가 다방향 플랫폼을 고안해야 할 충분한 이유를 찾지 못했으나, 다양한 산업수요가 발생하면서 플랫폼 종류도 다양해질 것으로 전망


<표 1> 에너지 부문 잠재적 플랫폼

생태계 기능	참여자	플랫폼 제공자
탄소 저장 및 포집(CCS)	발전사, 탄소 제품 사용자	CCS 발전소 운영자
탄소 정보 공개	정부, NGO, 소비자, 전력사	제3 리포팅 (reporting) 기관
수요반응	소비자 및 사업체, 배전사	수요반응 기업
전기 자동차 충전	소비자, 전력 소매업자, 자동차 제조업체	공공장소 제공자 (상점, 주차장 등)
전력 비교 구매	소비자, 전력 소매업자, 광고업자	포털 제공자
전력 전달	전력소매업자, 에너지 사용자, 분산발전 제공자	송·배전 업체
에너지 거래	전력 소매업자, 에너지 사용자, 분산발전 제공자, 발전사	에너지 브로커/거래자
에너지 관리	소비자 및 사업체, 에너지관리서비스 제공자, 애플리케이션 및 콘텐츠 제공자	장비/시스템 제조사 또는 포털 제공자
에너지 저장	분산발전 제공자, 에너지 사용자	에너지저장시스템 운영자
정보 통합 (장비 기반)	소비자 및 사업체, 에너지 제품 및 서비스 제공자, 애플리케이션 및 콘텐츠 제공자	장치/시스템 제조사
정보 통합 (포털 기반)	소비자 및 사업체, 에너지 제품 및 서비스 제공자, 애플리케이션 및 콘텐츠 제공자	포털 제공자
재생 에너지 또는 탄소 배출권 종합/거래	재생에너지 발전설비 소유자, 석탄/가스/석유 발전설비 소유자, 전력 소매업자, 정부	제3 시장조성자 (market maker)

자료: IBM, 2010.

- 데이터 급증과 분석 가치 확대
- 스마트그리드의 구축으로 에너지-ICT 융합 인프라에서 방대한 데이터 생성
 - · 스마트미터가 15분마다 데이터를 취득할 경우 연간 약 400MB의 데이터 를 생성한다고 볼 때, 한 전력회사가 1,000만 명의 고객에게 스마트미터 를 보급하면, 연간 다루어야 할 데이터의 양이 4,000TB로 증가

- · 정전 관리(outage management) 및 자산 활용(asset utilization)도를 높이 기 위해 배전자동화(distribution automation) 프로젝트에서 GIS 관련 수 천 개의 모니터, 스위치, 원격 터미널장치 등 설치
- · 전력정보계측통신장치(synchro-phasor unit)와 같은 스마트그리드 애플리 케이션들도 대량의 데이터 생성
- · 일례로 미국에서 수직적으로 통합되어 있고, 100만 고객을 보유하고 있는 한 중견 전력회사가 스마트그리드를 구축함에 따라 자사 인프라의 데이 터양이 연간 얼마나 늘어나는가를 보여주고 있음.

[그림 2] 스마트그리드 구축으로 인한 데이터 증대

- 주) AMI: advanced metering infrastructure, RTU: remote terminal unit, OMS: outage management system, PCT: Programmable Communicating Thermostat 자료: EPRI; BNEF, 2012.
- 에너지 데이터는 에너지 부문 ICT 융합으로 빠르게 팽창할 것이며, 이 방 대한 데이터를 어떻게 관리하고 활용하느냐가 관건
 - · 데이터분석을 통해 기업들은 고객관계를 강화하고 보다 효율적인 전력망 및 자산 운영 가능

- 에너지 부문 신규 사업자의 진출 및 참여
 - 기존 에너지기업뿐만 아니라 통신, 소프트웨어, 단말기, 보안, 건설, 자동차 등 다양한 영역의 사업자가 에너지 관련 사업에 참여하게 되고, 그 참여 폭이 점차 확대
 - · 스마트그리드의 경우 전력계층, 통신계층, 애플리케이션계층으로 구분되 면서 다양한 사업자들이 함께 스마트그리드 시스템 형성
 - 한 계층에 속하는 기업이 다른 계층에 참여하기도 하는데, 가령, 전력사 업자 자체 통신망으로 자체 애플리케이션을 제공할 수도 있고, 통신사업 자가 전력판매와 수요반응 프로그램 제공 등 복합적으로 스마트그리드 사업 추진 가능
- 기존 전력사업자의 역할 변화
- 분산에너지 성장, 청정기술의 부상, 에너지효율 프로그램 확대, ICT에 익숙 해진 고객들의 에너지관리욕구 증가, 제3의 에너지공급업체와의 경쟁 등으 로 전력산업은 새로운 변화를 요구받고 있음.
 - · 탄소배출량이 적지만 출력이 간헐적인 재생에너지 보급이 확대되면서 전 력망 운영에 대한 부담이 커지고 있고, 소비자들이 자체적으로 분산형 전 력생산시스템을 갖춰 가면서 수익기반이 축소
 - · 이상기후의 정도 및 빈도가 증가하고 변전소 및 송전탑 설치에 대한 수 용성이 낮아지면서 원거리의 중앙집중형 전력시스템을 통한 전력공급의 유용성 시비 증가
- 새로운 환경에 적응하지 못하고 고객의 수요를 충족하지 못하는 기업들은 경쟁에서 퇴보할 수밖에 없음.

○ 신규 리스크 증가

- 에너지 부문 ICT 융합으로 기존 에너지 분야에서 큰 쟁점이 아니었던 문제가 부각되고 있는데, 리스크 차원에서도 마찬가지임.
- 스마트에너지 환경에서는 풍력, 태양광 등 분산에너지가 전력계통에 연계되면서 전력망에 대한 연결접점이 많아지고, 다양한 이해당사자가 참여하여 실시간, 양방향 정보교환이 늘어나면서 사이버보안 위협이 크게 증가
 - · 양방향 통신기술 사용으로 보안위협이 높아지는데, 불법적인 데이터 위변조 공 격으로 전력계통 운영방해나 과금정보 조작을 통한 금전적 피해 발생 가능
 - · 시스템정보 및 취약점이 외부에 노출되어 있는 상용 하드웨어와 소프트 웨어 사용이 증가하여 기존 전력망에 비해 보안위협이 증가
 - · 수천만대의 스마트미터, 전기차 등이 전력망에 연결됨으로써 소비자단에 서 전력시스템으로 접근할 수 있는 지점이 대폭 증가
 - · 지능화된 서비스 제공을 위해 기존 수직적 통신구조를 벗어나, 주변 스마 트그리드 기기와 통신을 수행하는 등 상호연결성 증가로 위험관리 어려움
 - · 스마트미터, 배전센서 등 광범위한 지역에 분산된 스마트그리드 장비로 인해 위험관리 및 보안관제 곤란
- 에너지네트워크 현대화로 개인정보의 수집과 활용뿐만 아니라 유출도 증가
 - · 스마트그리드의 경우 과거처럼 한 달에 한 번씩 전력사용량을 측정하는 대신 스마트미터를 통해 실시간에 가깝게 전력사용 정보 획득
 - · 전력소비에 대한 모니터링을 통해 거주자의 수, 현재 거주 여부, 취침시 간과 기상시간 등에 대한 개별적인 정보를 취합하여 판단 가능
 - · 가정에서의 개인의 취미, 행동, 라이프스타일 등에 대한 개인정보가 노출

될 수 있으며, 이들 개인정보가 전력서비스 이외의 목적으로 사용될 가능 성이 있을 때 프라이버시 침해 우려

□ 에너지 부문 ICT 융합 전망

- ICT 기반 비즈니스 변화 방향
 - 모든 사물이 네트워크로 연결되는 사물인터넷 확산
 - · 정보기기 확산 및 네트워크 발달로 사람뿐만 아니라 사물도 인터넷으로 연결(Internet of Things, IoT)되는 세상 도래
 - 전문지식 업무를 대체해가는 빅데이터 분석의 고도화
 - · 빅데이터와 분석기술 발달은 전문지식 노동자들의 역할을 상당 부분 대체
 - 웹서비스의 무료제공과 같은 무료화 모델의 확산
 - 단순교류 차원을 넘어 비즈니스 수단으로 SNS(Social Network Service) 활용
 - 서비스 이용량에 따라 비용을 지불하는 서비스화(as a service) 방식 확산

[그림 3] 중장기 ICT 기반 비즈니스 트렌드

가트너	매킨지
1. 3D 프린팅의 지재권 침해	1. 소셜 매트릭스 결합
2. 3D 프린팅의 윤리 문제	2. '빅데이터'와 고급분석
3. 크라우드소싱 확산	3. 모든 사물 인터넷 구현
4. 디지털화에 의한 일자리 축소	4. 모든 것의 서비스화
5. 개인정보 공유 확대	5. 지식업무 자동화
6. 국가, 기업 정보유출 확대	6. 30억 디지털 시민 등장
7. 안전분야 스마트기기 적용 의무화	7. 디지털과 물리적 경험의 통합
8. 지식노동 분야 변화	8. 인터넷 기반 비즈니스 모델 무료화
9. 머신러닝 확산	9. 디지털 상거래 변화
10. 웨어러블 컴퓨터 확산	10. 정부, 의료 및 교육 등 공공분야 변혁

- 스마트에너지와 ICT 비즈니스 트렌드의 상호 작용
 - 상기 ICT 비즈니스 트렌드들은 다시 스마트에너지와 결합되면서 에너지 부문 ICT 영향을 지속적으로 확대
 - 에너지 부문의 서비스화가 진행되고, 특정 서비스가 무료화 되는 방향으로 전개
 - 무료화 모델 확산은 에너지 부문의 결합서비스 확산과도 그 맥을 같이 할 것으로 예상
 - SNS가 비즈니스 수단으로서 에너지공급자와 소비자간 소통 증진, 신규 스마트에너지 서비스 이용 촉진, 에너지이용 효율화에 활용되며, 또 다른 빅데이터 생성의 주요 원천으로 작용

Ⅲ. 정책 제언

- 에너지원별, 생애주기별 전 분야에 걸쳐 ICT 융합이 진행되고 있으며, 에 너지산업의 가치흐름이 기존 단선적 방향에서 다양한 복합적 방향으로 변 화하고, 소비자가 가치사슬의 중심이 되어가고 있음
 - 이 과정에서 새로운 제품과 서비스를 제공하는 기업들이 참여하며 새로운 형태의 협력과 경쟁관계가 나타나고, 고객만족 및 가치창출에 미진한 기업 들은 퇴보할 수 있음
 - 또한, 빅데이터 분석 기술과 사물인터넷의 발달로 인해 에너지데이터 활용과 에너지데이터 시장 가치가 높아지고, 무료화, 서비스화 등의 ICT 기반 비즈니스 모델이 에너지 분야에서 확산되고 있음.
- ICT 융합에 의해 에너지 분야에서의 새로운 가치 창출을 촉진하기 위해서

- 는 에너지데이터 공유와 스마트에너지 시장참여 기회가 보다 개방될 필요 가 있음.
- 에너지 부문의 ICT 기반 신규 서비스는 대체로 에너지데이터 활용을 기반 으로 하고 있음.
- 에너지데이터 확보에 대한 정당한 대가를 지불하고 에너지소비자의 개인정 보를 보호하면서, 신규 에너지서비스를 활성화할 수 있는 에너지데이터 공 유 시스템을 만들어가야 함.
- 신규 에너지서비스를 제공할 수 있는 기회를 확대함으로써 신규 일자리 창 출과 에너지산업 경쟁력 강화에 노력해야 함.
- 스마트에너지와 함께 동반되는 리스크에도 대응할 수 있어야 함.
 - ICT 융합으로 인해 ICT 기반 리스크가 에너지 분야에서 재현될 수 있는 데, 특히 사이버보안 위협과 개인정보 노출 문제에 대한 대응이 중요함.
 - 스마트에너지 환경에서 에너지네트워크에 대한 연결접점이 많아지고 정보 교환이 늘어나면서 사이버보안 공격 경로도 확대되기 마련이며, 에너지데 이터 활용에 따른 개인정보 노출 위험도 높아짐.
 - 에너지 부문 신규 리스크를 사전에 방지하거나 최소화할 수 있는 대안을 지속적으로 검토해야 할 것임.
- 스마트에너지가 지속발전하기 위해서는 최종 소비자의 스마트에너지 수용 이 전제되어야 함.
 - 스마트에너지 수용성 제고 차원에서 유연한 요금제를 기반으로 스마트에너 지 기술의 유용성 인식을 높이는 것도 중요하지만, 동시에 스마트에너지 관련 리스크 인식을 줄이는 노력도 함께 이루어져야 함.
 - 소비자들은 스마트에너지의 편익뿐만 아니라 리스크 역시 함께 인지하고

있는데, 이 리스크에 대한 인지는 스마트에너지 사용의도를 줄이는 방향 으로 작용하게 됨.

- 또한 기대와 만족 간의 간격을 최소화하는 노력이 필요함. 즉, 소비자들이 스마트에너지에 대해 지나친 기대를 갖지 않도록 해야 함.
 - · 스마트에너지 교육과 홍보 과정에서 지나치게 과장된 정보를 전달하지 않도록 주의해야 함.
 - · 스마트에너지 기술 개발 시 스마트에너지 편익을 확대하는 노력과 리스 크를 축소하는 노력 간 균형을 유지해야 함.
 - · 스마트에너지의 사용용이성을 높일 수 있도록 기존 기술과의 호환성을 높이고 사용자 인터페이스를 직관적으로 설계하는 노력이 중요함.
- 국가정보화 차원에서 스마트에너지에 대한 국가비전을 구축하고, 현재 집 중적으로 추진되고 있는 전력 부문의 ICT 융합사업을 타 에너지 지능화 사업과 연계하여 발전시켜 나가야 함.
 - 스마트에너지는 단기간에 그칠 트렌드가 아니라 ICT의 발전과 함께 꾸준히 에너지 영역에서 변화를 일으킬 메가트렌드로 봐야 함.
 - 현재 국내에서는 주로 전력산업에서 ICT를 활용한 사업이 활발히 추진되고 있으나, 세계적으로 볼 때 ICT 융합은 에너지 분야에서 전반적으로 진행되고 있으며, 각 영역에서 필요한 해결책 역할을 담당하고 있음.
 - 기술차원의 융합을 넘어 지능화로 인한 에너지수급의 변화, 시장참여자 간 경쟁구도 변화, 관련 정책 및 법제도 변화 등에 대한 바람직한 미래 설계 가 중요한 시점임.

Ⅳ. 기대 효과

- □ 에너지 강국을 향한 에너지 지능화 정책수립의 이론적 기반 마련
 - 에너지 지능화의 개념을 정립하고 에너지-정보통신 융합 전개 방향 정교화
 - 에너지 지능화의 연구 자체가 매우 부족한 상황에서 시뮬레이션 기법을 접 목한 참신성 확보
 - 청정, 효율, 안정적인 에너지시스템 구축 관련 기존 전략의 고도화 가능
- □ 스마트그리드를 넘어 가스, 석유, 재생에너지, 원자력 등 에너지 전반에서 지능화를 촉진하기 위한 전략 연구의 기초 문헌으로 기능

< 참고자료 >

1. 참고문헌

- 관계부처합동, "IT융합 확산전략 2013~'17", 제5차 중장기전략위, 2012.9.7.
- 관계부처합동, "창조경제 시대의 ICT 기반 에너지 수요관리 신시장 창출방안", 2013.8.
- 김도훈, 문태훈, 김동환, "시스템 다이내믹스", 대영문화사, 2001.
- 김동환, "자동차계의 애플, 테슬라 전기자동차의 성공전략", 한화생명, 2013.8.28.
- 김영근, "가스배관망 관리에서 IT 융합기술의 현주소", 제 1회 지능형 가스 배관망 ICT 기술 포럼, 2012.
- 김현제, 박찬국, "세계 스마트그리드 정책 및 시장 변화 연구", 에너지경제연구원, 2013.
- 김현제, 박찬국, "스마트그리드 시범사업 성과 평가기준 설정 연구", 2011.12.
- 김현제, 박찬국, "안전한 스마트그리드 구축 및 활용을 위한 법제도 개선방안", 지식경제부, 2012.2.
- 김현제, 박찬국, 김양수, "스마트그리드 소비자 수용성 확보 방안 연구", 에너 지경제연구원, 2012.12.
- 녹색기술정보포털, "소셜미디어, 에너지효율 수단으로서 중요성 증대", 2012.4.10.
- 문영환, "국가 전력 물샐 틈 없이 지키겠다", 디피뉴스, 2009.12.4.
- 박찬국, "미국 스마트그리드 시장 현주소와 도전과제", 에너지경제연구원, 2009.12.

- 박찬국, "스마트그리드 데이터 분석의 중요성과 관련 시장", IT기획시리즈, 주 간기술동향, 2013.
- 박찬국, "스마트그리드 보안과 정보활용의 조화", IT기획시리즈, 주간기술동향, 2013.
- 박찬국, "스마트그리드 연구팀 주요 성과", 에너지경제연구원, 2010.
- 박찬국, "피어 투 피어(peer to peer) 에너지 기술 발전과 도전 과제, 전자정보 센터, 2009.1.
- 박찬국, 용태석, "스마트그리드 계층구조와 시장참여자", 주간기술동향, 정보통 신산업진흥원, 2009.12.2.
- 박찬국, 용태석, "스마트그리드 기술 및 시장 동향", KISTEP 동향브리프, 한국 과학기술평가원, 2011.6.
- 산업통상자원부, 스마트그리드 확산사업 추진계획, 2013.8.
- 연승준, 하원규, 임시영, "EU의 IT기반미래기술 정책 및 연구", ETRI, 2007.
- 유동헌, 김현제, 박찬국, "스마트그리드 시장참여자간 경쟁 활성화 및 이해 조 정을 위한 정부의 역할", 지식경제부, 2011.
- 이각범, 박찬국, "에너지 효율화를 위한 유럽의 IT전략 연구", IITA, 2008.
- 이각범, 박찬국, 용태석, "EU와 한국의 IT를 통한 에너지효율화 정책 비교 연구", 제15권 제3호, 정보화정책, 2008, pp. 21-41.
- 이각범, 용태석, 황지연, "IT·에너지 융합에 따른 신사업영역 발굴과 융합촉진 방안 연구", 지식경제부, 2009.12.
- 이각범, 정제호, 박찬국, "정보통신서비스 진화에 따른 규제정책의 방향과 적용", IT전략연구원, 2005.

- 이성인, "에너지관리시스템(EMS) 산업 육성 방안", 에너지경제연구원, 2013.12.
- 주재욱, 윤두영, 이주영, 이경현, "통신시장 구조변화에 따른 가치사슬 및 가치 네트워크에 관한 동태적 분석", 정보통신정책연구원, 2010.12.
- 포스코ICT, "국내 최대 산소공장에 설치된 EMS", 전기평론, 2013.
- 한국스마트그리드사업단 "스마트그리드 실증사업 동향분석(해외 사례 중심으로)", 한국스마트그리드사업단, 2010.11.
- 한국정보화진흥원, "IT기반 5대 중장기 비즈니스 트렌드 전망", 2013.12.
- 한국정보화진흥원, "2013년 ESCO사업 성과보고회 발표자료", 2013.
- GTnet, "캐나다, 지능형 풍력터빈, 재생에너지 확대에 기여", 녹색기술정보포털, 2013.
- KISTI 미리안, "태양광발전소 맵핑(mapping) 기술 개선", 글로벌동향브리핑, 2011.
- KISTI 미리안, "태양에너지의 구글라이제이션(Googlization)", 글로벌동향브리핑, 2011.
- Bartels, H. A., "IT for Energy: What's Coming Next, Technologies for Utilities' Near-term and Long-Term Needs." The 7th Global Congress on Information and Communication Technology in Energy, Busan, Korea, 2005, pp. 8-13.
- Bhattacherjee A., Understanding Information Systems Continuance: An Expectiation-Confirmation Model, MIS Quarterly, 25(3), 2001, pp. 351-370.
- BNEF, "Apple takes a bite out of utility ambition in the home", 2014.6.6.
- BNEF, "Smart grid analytics and data management: a primer", 2012.5.11.

- "Unleashing Productivity: The Digital Oil & Company, Field Advantage", 2008.
- Bullis, K., "Sharper Computer Models Clear the Way for More Wind Power", Energy News, Technologyreview.com, 2013.5.14.
- CleanTechnica, "Over 70% of Californians Go Solar Using a Service (Don't Buy Their Solar Power Systems)", cleantechica.com, 2012.3.28.
- EEnergy Informer, "Is Google an information or energy company?", 2014.3.20.
- Electric Light and Power, "Utilities more into social media than ever", ELP.COM, 2014.7.4.
- EPRI. 2012. Understanding Electric Utility Customers Summary Report. Technical Report, ETRI, Palo Alto, CA.
- Fehrenbacher, K., "The Googlization of solar", GIGAOM, 2011.9.8.
- Financial Post, "Smart wind turbines will boost Canada's renewable energy portfolio", 2013.8.6.
- Greentechmedia, "Internet and Cable Giant Comcast Will Soon Sell Electricity in Pennsylvania", Greentechmedia.com, 2014.1.23.
- GridWise Alliance. 2013. 2013 Grid Modernization Index. GridWise Alliance, Washington, DC.
- IBM, "Lighting the way: Understanding the smart energy consumer", 2009.2.19.
- IBM, "Switching perspectives: Creating new business models for a changing world of energy", IBM Global Business Services, 2010.3.

IBM, "Knowledge is power", White Paper, 2011.

IEA, "Smart Grids Technology Roadmap", 2011(a).

IEA, "Smart Grid - Smart Customer Policy Needs", 2011(b).

iRevolution, "Using Twitter to Map Blackouts During Hurricane Sandy", 2013.7.3.

Kisker, H., "The IT-Driven Energy Revolution", A BT Future Report, Forrester Research, 2012.

MIT, "The Future of the Electric Grid", 2011.12.

Moresco, J. "People Power: Using Facebook To Cut Carbon", GIGAOM, 2010.1.26.

NanoMarkets, "Markets for Sensors for the Smart Grid: 2014-2021", 2014.8.12.

Navigant Research, "Smart Grid as a Service", 2014.

Pike Research, "Social Media in the Utility Industry", 2011.

Porter, M. "Competitive Advantage: Creating and Sustaining Superior Performance", The Free Press, 1985.

PV Solar Report, "70% of Californians Going Solar Choose Third-party-owned Options", 2012.3.27.

Siedsma, A., "UCSD Engineers Improve Solar Power Mapping", Renewable Energy World.com

Smart Grid Consumer Collaborative (SGCC). 2010. Consumer Voice: Results of Baseline Focus Groups. SGCC, Atlanta.

- UtilityDIVE, "Comcast selling electricity: Strikeout or home run?", UtilityDIVE.com, 2014.2.3.
- Wu, J.H., S.C. Wang, "What drives mobile commerce? An empirical evaluation of the revised technology acceptance model", Information and Management 42, 2005, pp.719-729.

Zpryme, "The prosumer energy market place", Smart Grid Insights, 2014.8.

정책 이슈페이퍼 14-19 에너지 부문 정보통신 융합의 전개구도와 영향

2015년 2월 23일 인쇄

2015년 2월 23일 발행

저 자 박 찬 국, 김 현 제, 유 학 식

발행인 김 현 제

발행처 에너지경제연구원

681-3000 울산광역시 중구 종가로 405-11 전화: (052)714-2114(代) 팩시밀리: (052)714-2028

등 록 1992년 12월 7일 제7호

인 쇄 크리커뮤니케이션 (02)2273-1775