정책 이슈페이퍼 16-09

미국산 LNG 도입환경과 국내 가스시장 파급효과 분석

도현재

목 차

- │. 배경 및 문제점 / 1
- Ⅱ. 미국 LNG 프로젝트 특성 / 2
- Ⅲ. 국내 가스시장 영향 / 12
- Ⅳ. 시사점 및 정책 제언 / 22
- <참고자료> / 25

I. 배경 및 문제점

- □ 2016년부터 개시되는 미국의 LNG 수출은 국제 LNG 거래의 경직성 완화 등 계약조건의 큰 변화를 가져오며, LNG 매매에서 과거와는 다른 형태의 리스크와 기회를 수반할 것임.
 - 미국산 LNG는 미국 내 잘 발달된 현물시장에 기반한 유연한 거래조건이 적용되기 때문에 기존의 전통적인 LNG 공급자가 제공하는 경직적인 거래 조건과는 큰 차이가 있음.
 - 유연한 특성의 미국산 LNG가 국제 LNG 시장에 유입됨으로써 국제 LNG 시장의 거래방식과 조건에 큰 변화를 나타날 것으로 전망됨.
 - 특히, 도입가격이 Henry Hub 현물가격에 연동되며 목적지 전환이 자유로 운 미국산 LNG는 세계 지역별 가스시장 간 가격 연계성을 높이고, 단기· 현물 거래의 확대와 LNG 거래의 유연성을 제고할 것으로 예상됨.
 - 이제까지 세계 천연가스 시장은 주요 소비지역을 중심으로 미국, 유럽, 아 시아의 3대 시장으로 대별되며, 재판매를 금지하는 계약조건 및 경직적인 공급관행 때문에 지역시장 간 유동적인 거래가 제한적이었음.
- □ LNG 거래에 이 같은 중대한 변화가 예상되지만 미국산 LNG 프로젝트의 구조적 특성이나 그에 수반되는 리스크와 영향에 대한 연구는 거의 전무함.
 - 국내 다수의 사업자가 미국산 LNG 도입을 추진하고 있음. 이에 도입 시 고려해야 할 미국 LNG 프로젝트의 특성과 제반 리스크를 분석함.
- 또한, 미국산 LNG 프로젝트에 수반되는 유연성의 가치를 정량적으로 분석 함으로써 국내 가스시장에 대한 시사점을 살펴봄.

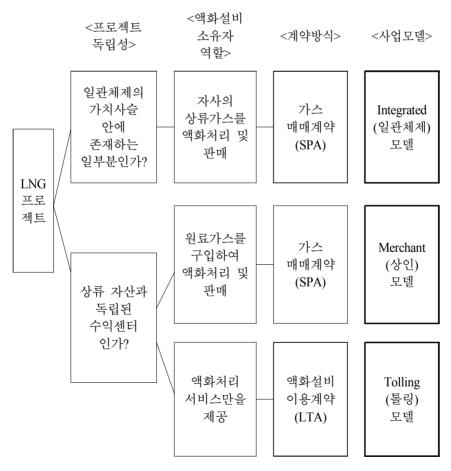
Ⅱ. 미국 LNG 프로젝트의 특성

1. 미국 LNG 프로젝트의 사업모델

- □ 미국의 LNG 수출 프로젝트는 자국 천연가스 시장 고유의 특성이 반영되어 다른 지역의 전통적인 LNG 프로젝트와는 확연히 다른 사업모델 형태로 추진되고 있음.
 - 미국의 천연가스 시장은 생산, 공급 및 가격 체계 등에 있어서 아시아 시 장과는 확연히 다른 구조와 특성을 가지고 있음.
 - 북미와 영국의 천연가스 시장은 자국 내 풍부한 천연가스 자원과 경쟁체제 가 갖춰진 산업구조를 기반으로 현물 및 선물시장이 잘 발달해 있으며, 유 럽대륙도 시장자유화를 확대해 옴에 따라 시장 유동성이 증대되고 있음.
 - 특히 미국은 시장 규모가 크고 잘 연계된 배관망과 많은 거래허브 등 가스 수송과 거래의 기반설비가 잘 갖추어져 있으며, 다양한 시장참여자(생산자, 수송회사, 트레이더, 지역 공급회사)들이 공급체계 생태계를 구성함.
 - 이에 반해, 우리나라를 비롯하여 중국, 일본, 대만 등 동아시아의 천연가스 시장은 시장지배력을 가진 소수의 대형 공급자에 의해 독점적 또는 과점 적 형태로 운영되고 있음.
 - 미국 LNG 프로젝트는 사업모델의 구조적 차이 및 미국 천연가스 시장 고 유의 특성으로 이제까지와는 다른 거래환경과 함께 다양한 리스크 및 수익 기회를 제공할 것임.
 - LNG 프로젝트 사업모델은 Integrated(일관체제) 모델, Merchant(상인) 모델, 액화설비 이용계약 방식인 액화서비스 Tolling(톨링) 모델의 세 가지

유형으로 구별할 수 있음.

- Integrated LNG 프로젝트 모델은 상류 가스자산을 소유한 기업(또는 컨소 시엄)이 천연가스 자산을 현금화하기 위해 액화설비 건설에 투자하여 LNG 형태로 소비처에 판매하는 사업형태임.
 - 천연가스 상류자산과 일관체제로 개발되는 전통적 형태의 Integrated 모델 은 액화설비 건설을 뒷받침할 수 있는 대규모 상류 자산이 필요하며, 주로 메이저나 자원보유국의 국영자원기업에 의해 추진됨.
- Integrated 모델과 달리, LNG 액화설비가 특정 상류자산에 연계되지 않고 독립된 수익센터(profit center)로 기능하는 경우, 그 사업유형(계약방식)에 따라 Merchant 모델과 Tolling 모델로 구분될 수 있음.
 - LNG 프로젝트 운영자가 원료가스(feedgas)를 직접 조달하여 액화한 LNG 를 판매하는 '상인(merchant)'과 같은 역할을 하여 Merchant 모델1)이라 하 며, Integrated 모델에서와 같이 수요자와는 LNG 매매계약(SPA)을 체결함.
 - 반면에 LNG 프로젝트 운영자가 타인 소유의 원료가스를 액화 처리하는 서비스만을 제공할 때 LNG 수입자와는 액화설비 이용계약(liquefaction tolling agreement: LTA)을 체결하며, 액화서비스 Tolling 모델이라 칭함.
- □ 현재 미국에서 추진되는 대다수의 LNG 프로젝트는 Merchant 모델 또는 Tolling 모델을 채택하고 있으며, 특히 사업자가 액화플랜트 건설·운영 이 외의 위험을 부담할 필요가 없는 Tolling 모델이 주류를 이루고 있음.2)
 - Merchant 또는 Tolling 모델은 전통적인 LNG 매매계약에 관행적으로 적 용되는 의무인수(take-or-pay)조항이나 목적지제한(destination)조항과 같은


¹⁾ 이 모델을 매매방식(buy-sell arrangement)이라고도 칭함. Weems and Hwang(2013)

²⁾ Miles and Bennett(2014)

경직적인 제약조건으로부터 자유롭다는 장점이 있음.

- LNG의 실제 인수 여부나 액화설비 이용 여부와 관계없이 액화설비 이용 료는 지불해야 하지만, LNG 수입자가 LNG를 인수하지 않거나 액화서비스를 이용하지 않을 수 있는 계약상의 유연성이 일반적으로 허용됨.
- 이에 따라 미국의 LNG 프로젝트에서는 확보한 물량의 재판매나 차익거래 등 수익 기회가 주어지는 반면, 새로운 거래환경 및 사업모델 차이에서 오는 여러 위험에 노출되게 됨.

<표 1> LNG 프로젝트 사업모델의 구분

자료: Weems and Hwang(2013)의 내용을 저자가 정리

2. LNG 프로젝트 사업모델별 특성과 차이점

- □ 미국의 가스시장 환경은 상류(생산가스전), 중류(수송파이프라인 및 액화설 비) 자산에 대한 구매 및 임대 등 시장 접근을 통한 사업단계별 투자비 절 감이 가능하여 유연한 LNG 사업모델을 구축할 수 있다는 장점이 있음.
 - 미국에서 Merchant 및 Tolling 모델의 프로젝트가 등장하게 된 배경에는 잘 발달된 현물·선물시장이 존재하여 액화설비 사업자가 원료가스를 직접 개발·생산하지 않아도 시장 거래를 통해 확보가 가능하기 때문임.
 - 반면 상·중류부문과 연계되어 있지 않은 탓에 원료가스의 구매, 파이프라 인 용량 임대 또는 수송서비스 확보 등 필수 업무를 조율함에 있어 사업구 조 특유의 리스크가 수반되는 단점도 있음.
 - Merchant 모델에서는 액화프로젝트 회사가 상류의 가스 생산자나 가스 거 래허브에서 원료가스를 매입하여 자사의 액화설비에서 원료가스를 액화처리 하고 제3자에게 LNG를 판매함.
 - 상류자산과의 연계성이 강한 Integrated 모델과 달리, Merchant 모델에서 는 원료가스 조달 측면에서 자유도가 높다는 장점이 있음.
 - 사업 참여자들은 액화프로젝트 가치사슬 중 액화사업에만 참여하고 다른 상·중류사업에는 참여하지 않아도 되므로 사업구조 측면에서 자유도가 높음.
 - 반면에, 원료가스 매입과 수송파이프라인 확보 등을 다수의 거래상대자와 계약을 체결해야 하므로 Integrated 모델에 비해 가격변동의 위험과 거래상 대방(counter-party) 위험에 더 크게 노출됨.

<표 2> Merchant 모델과 Tolling 모델에서의 책임소재 비교

	원료가스 조달의무	액화설비 소유권	액화설비의 LNG 소유권	가격변동 위험 노출	수익원
Merchant	액화프로젝트	액화프로젝트	액화프로젝트	액화프로젝트	LNG
모델	회사	회사	회사	회사	판매수익
Tolling	액화설비	Tolling 회사	액화설비	액화설비	액화설비
모델	이용자		이용자	이용자	이용요금

- □ 미국에서 주로 채택되는 사업모델인 Tolling 프로젝트 하에서는 액화설비에 주입할 원료가스를 조달하고 액화설비까지 수송하는 전 과정의 책임을 액화서비스 이용자(Toller)인 LNG 수입자(또는 재판매자)가 담당하게 됨.
 - LNG 수입자인 Toller는 Integrated 모델이나 Merchant 모델에서의 수입자에 비해 원료가스 조달, 수송서비스 확보 등 액화설비의 이용과 관련한 다양한 리스크에 노출됨.
 - 액화서비스 제공자(tolling 회사)는 액화설비만 보유·운영할 뿐, 원료가스를 매입하거나 액화 처리한 LNG를 판매하는 것은 설비이용자(Toller)의 몫이 므로 가스가격 변동위험 등에 직접적으로 노출되지 않음.
- 미국의 Tolling 모델과 전통적인 LNG 개발 모델과의 또 하나의 중요한 차이점은 계약한 공급물량의 보장에 있음.
 - Tolling 모델에서 액화설비가 어떤 이유에서든 가동이 중단되는 경우, 액화서비스 사업자는 수요자의 대체 LNG 물량 확보비용을 보상할 의무를 부담하지 않으려 할 유인이 높음.3)
 - 따라서 LNG 수입자는 기존의 LNG 프로젝트모델에서보다 Tolling 모델에서 더 큰 공급물량 차질 리스크를 안게 됨.

³⁾ Citi Research(2015, p.29)

⁶ 정책 이슈페이퍼 16-09

3. 미국 LNG 프로젝트에 수반되는 유형별 리스크 분석

□ 원료가스 조달 리스크

- 미국 LNG 프로젝트로부터 도입을 추진할 때 수반되는 여러 리스크 중 가 장 핵심적인 사안은 원료가스(feedgas) 조달과 관련된 것임.
 - 특히 Tolling 모델에서는 원료를 직접 조달해야하기에 매매환경의 복잡성 및 다양한 거래상대방(counter party)의 계약불이행 가능성 등 조달단계에 서 발생할 수 있는 다양한 위험에 대한 고려와 대비가 필요함.4)
 - 원료가스 조달과 관련한 리스크는 크게 수입자의 미국 가스시장 경험 부 족, 원료가스 공급 중단 등 조달원에서의 공급 차질, 원료가스 포트폴리오 관리 및 거래상대방 리스크 등으로 구분할 수 있음.5)
- 원료가스 매매시장의 복잡성과 수입자의 미국 가스시장 경험 부족
 - 미국의 가스 매매시장에는 다수의 이질적인 참여자들이 존재하고, 규모나 성향에 따라 매매 형태나 논의과정도 다양하여 더욱 복잡한 양상을 띰.
 - 원료가스 물량 규모, 계약 기간, 조달 유형, 수송 일정 등 다양한 계약들을 조합하여 LNG 생산기간 동안 최적화된 포트폴리오의 구성은 특히 미국 가스시장 환경에 익숙하지 않은 외국의 구매자로서는 어려움이 따르게 됨.
 - 또한 미국 가스시장 계약과정에는 많은 서류작업이 수반됨. 표준계약서에 더하여 첨부되는 방대한 부가조건들의 상황과 발생 가능성 등을 가늠할 수 있으려면 미국 가스시장에 대한 폭넓은 전문성과 경험이 요구됨.

⁴⁾ Merchant 모델의 경우 Tolling 모델에 비해 원료가스 조달과 관련한 리스크는 줄어들지만, 수입가격이 미국 내 현물시장 가격에 연동되기 때문에 원료가스의 가격 변동 리스크에 노출되고, 또 현물가격에 더하여 일정액 을 조달단계 비용으로 지불하기 때문에 도입단가 경제성 측면에서의 불이익을 감수해야 함.

⁵⁾ Drummond(2013, p.33)

- 원료가스 공급 중단 등 조달원에서의 공급 차질
 - 원료가스 조달은 가스전에서 매매계약 체결, 상류부문 지분 참여를 통한 물량 확보, 거래허브 등 시장거래를 통해 조달할 수 있으며, 직접 조달하거 나 대리인을 통하는 등 그 방법들이 다양함.
 - 상류 가스전의 결빙이나 설비 고장 등 원료가스 조달단계에서의 차질 발생 가능성 평가 및 저장설비 활용 등의 대비책에 대한 경제성 검토가 필요함.
 - 검증된 트레이더 등으로부터 공급받는 경우에도 불가피한 공급 중단에 대비해 대체가스의 구입 등 공급자(원료가스 판매자)의 의무조항 명시와 같은 공급 안정성을 담보하는 계약상의 장치가 필요함.
- 원료가스 포트폴리오 관리 및 거래상대방 리스크
 - 액화설비에 주입되는 원료가스 규모는 미국의 현물가스 시장에서 거래되는 대부분의 계약에 비해 매우 크며, 대규모 가스물량을 거래하는 마케터의 수는 많지 않기 때문에 다수의 매입계약을 동시에 체결할 필요가 있음.0
 - 더욱 심각한 제약사항은 가스전을 개발·생산하는 E&P 기업이 일반적으로 가스정 생산곡선의 불확실성과 지속적인 자본투자의 부담 등으로 5년을 초과하는 장기 판매계약을 꺼린다는 점임.
 - 액화설비 이용계약은 20년 이상의 장기간인데 비해 원료가스 매매계약은 관행상 5년 이내로 체결되기 때문에, 장기 Tolling 계약에 해당하는 지속적 인 원료가스 공급 프로파일을 구상해야 함.
 - 또한 유가 등락에 따른 E&P 기업들의 부침이 큰 상황에서 원료가스 매입계약에 거래상대방 리스크가 존재함. 특히 셰일가스 생산자와의 공급계약체결은 전통가스 생산자보다 물량 실패의 위험이 더 클 수 있음.7

⁶⁾ 즉, 단일 또는 소수의 매입계약으로는 대량의 원료가스의 조달이 어려울 수 있어서, 계약 관리나 원료가스 매 입포트폴리오 관리 등의 복잡함과 번거로움이 수반됨. LNG Business Review(2015a, p.13)

□ 원료가스 가격 변동 및 비용 상승 리스크

- 원료가스 가격에는 미국 가스시장의 기본적인 변동성에 더하여, 지역 수급 상황에 따른 큰 폭의 변동 위험이 존재함.
 - 미국 내 특정 지역에 혹한 등 이상기후 발생 시 지역에 따라 가격이 급등 락하거나 현격한 차이가 발생함. 또한 미국 가스가격이 예상치 못하게 상 승할 경우 미국 LNG 수입의 경제성이 급격히 악화될 가능성도 존재함.
 - 유가에 연동된 LNG 도입물량의 경우 대체로 국제 원유·가스 시황에 따라 함께 등락하여 상대적 경제성이 크게 변화하지 않지만, 미국 LNG의 경우 국제 시장과 비동조적으로 움직일 가능성이 다른 지역보다 큼.8)
- 원료가스의 직접 조달을 위해 상류부문에 지분참여를 할 경우 환경규제 강화 또는 기술적 장애로 인한 가스 생산비용의 상승 위험이 있음.
 - 운영권자로서가 아닌 단순 지분참여 시 지질자원 및 투자결정 관련 정보 등의 접근에 대한 제약 및 정보 비대칭성으로 효율적인 투자결정이 저해되어 투자예측 실패의 위험도 존재함.

□ 완공 및 운영 리스크

- 액화플랜트의 완공까지 파이낸싱, 복잡한 조건의 매매계약 및 설비이용 계약 체결 등 다양한 변수가 존재함.
 - 이런 요소들 중 어느 한 부문에서 문제가 발생하거나 계획과는 다른 상황 이 발생할 경우 프로젝트가 중단되거나 준공이 지연되고, 어떤 경우에는

⁷⁾ 가스전 개발에 필요한 출자와 자본지출이 가스 생산 이전에 대부분 이루어지는 전통가스 개발과 달리, 셰일가 스 개발은 생산을 지속하기 위해 생산개시 이후에도 계속적인 자본투자 약정을 요하는 경우가 많음.

⁸⁾ 금융위기 이후 2014년까지 미국 내 가스가격은 다른 지역시장보다 현저히 낮은 수준을 유지한 바 있음. 미국 의 LNG 수출 개시로 이 같은 시장단절 효과는 다소 줄어들겠지만 여전히 가능성이 있음.

착수조차 하지 못하게 될 위험이 있음.

- 일반적으로 액화설비의 건설에는 상당한 지연 위험이 있으며, 기술적 문제 이외에도 환경적 규제나 정치적 요인 등에 의해 계약한 프로젝트 건설에 차질이 빚어질 수 있음.9)
- 다수의 고객이 동일한 액화설비를 이용함에 따른 운영상의 복잡성으로 저 장설비 이용, 가스 수송, 액화 등의 스케줄에 문제가 발생할 수가 있음.
 - 대체 액화설비를 확보하거나 원료가스를 재판매해야 할 상황에 처할 수 있으며, 문제가 장기화될 경우 도입 안정성에 더 큰 위험이 될 수 있음.
 - 이로 인한 액화서비스 신규 확보나 원료가스 급처분 비용의 부담 주체, 미 제공 설비용량의 보상방안 등에 대해 사전에 명확히 규정할 필요가 있음.

□ 수송서비스 이용 관련 리스크

- 한편, 상류부문 자산을 확보하기 전에 파이프라인 수송에 따른 옵션과 비 상시 우회 공급 및 예상 비용에 대한 검토가 필요함.
- LNG 수입자는 원료가스 조달에서 액화설비에 주입하기까지의 과정 일체를 마케터를 고용하여 일임하거나, 직접 가스를 조달하고 파이프라인 용량을 확보하여 수송할 수 있음.
 - 가스 마케터에게 일임하면, 액화설비에서 원료가스를 인수받기 때문에 그 이전 단계에서 발생할 수 있는 모든 위험을 회피할 수 있음.
 - 반면 미국 가스시장 운영에 대한 경험 및 노하우를 축적하지 못하여, 장기 적으로도 대리인(agent)에게 의존해야 하여 원료가스 조달 및 수송의 거래 비용의 절감 기회가 제약됨.10)

⁹⁾ Tolling 모델에서 액화프로젝트 회사가 계약상의 액화설비 용량을 제공하지 못하거나 액화설비의 가동개시 시점을 준수하지 못하는 상황이 발생할 수 있음.

- 원료가스를 액화설비까지 수송하기 위한 서비스 이용에도 적정 파이프라인 용량확보, 가스 품질요건 충족, 시점별 고지절차 준수 등의 과정이 수반됨.
 - 파이프라인에 주입되는 가스의 조성이 품질요건을 충족해야 하며, 수송설비 운영자 및 액화설비 운영자와는 일정한 고지절차에 맞추어 원료가스 수송 및 주입 일정 등을 조율해야 함.
 - 또한 수송파이프라인의 운영 실적을 분석하여 파이프라인 운영 중단 가능 성과 대체 수송수단 또는 액화설비 인근에서의 원료가스 확보수단에 대한 검토가 필요함.

□ 시장참여자의 계약불이행 리스크

- LNG 프로젝트에서 다양한 시장참여자와의 계약 관계가 형성되는데, 각 단 계별 계약상대방이 불리한 상황에서도 계약조건을 준수할 것인가는 LNG 공급 및 프로젝트 운영 안정성과 직결되는 중요한 문제임.
 - 액화서비스 이용계약의 경우, 동일한 액화설비를 다수의 고객(tollers)들이 이용하므로, 어느 한 이용자의 계약사항 미준수는 다른 이용자에게 영향을 미칠 수 있음.11)
 - 액화서비스 이용자들은 제한된 저장설비를 공동 이용함에 있어서도 다른 이용자들의 원료가스 공급 또는 LNG 인수의무의 적정 이행여부에 영향을 받게 됨.

¹⁰⁾ LNG Business Review(2015b, p.15)에 따르면 이러한 대리인 비용은 백만Btu당 0.25~0.50달러 수준이며, 연 간 1 MPTA의 가스를 수송한다고 할 때 연간 비용은 약 1,300만~2,600만 달러 수준에 달함.

¹¹⁾ 각 액화서비스 이용자들의 원료가스는 Tolling 회사의 액화설비에 함께 주입되지만, LNG의 인출 때에는 벌 크 카고로 분리 하역되는데, 이때 설비이용자들은 교대로 돌아가면서 LNG 카고를 인수하게 될 가능성이 높

Ⅲ. 미국산 LNG 도입의 국내 가스시장 영향

- 미국산 LNG의 국내외 시장 유입은 기존의 전통적인 공급자가 추진하는 프로젝트와는 그 특성이 달라, 단순히 국제 LNG 시장에의 공급력 확대만 을 의미하는 것 이상의 중요한 영향을 미칠 것임.
 - 특히, 목적지 제한이 없는 유연한 특성의 미국산 LNG는 국제 시장에서 재판매 및 차익거래 확대, 경직적 계약조건 완화 등 LNG 거래관행 개선을 촉발하는 중요한 전기가 될 것임.
 - 또한, Kogas, SK E&S 등 국내 사업자들이 미국산 LNG 도입을 계획하고 있음에 따라, 국제 시장관행뿐 아니라 국내 도입가격 및 도입 관행, 시장 참여자 다변화 등의 측면에서도 적지 않은 영향을 미칠 것으로 예상됨.
 - 이하에서는 미국산 LNG 프로젝트 고유의 유연한 특성이 가지는 의미와 가치에 대해 옵션 모형을 통해 정량적으로 분석함.

1. 미국산 LNG 도입계약의 신축성(유연성) 가치 평가

- 일반적으로 Merchant 모델 또는 Tolling 모델에서는 프로젝트 사업자가 원료가스 소유자가 아니기 때문에 약정물량을 인수하지 않는 경우에도 사업자의 손실은 대체로 액화설비 투자비용 수준에 국한됨.
 - 특히 Tolling 모델에서 사업자의 수익은 액화설비 이용료에서 전부 발생하기 때문에, 액화설비 이용료 수입만 동일하게 보장된다면 사업자는 액화서비스 실제 이용이나 액화된 LNG의 재판매 여부에 관여할 유인이 없음.
 - Merchant 모델에서도 액화사업이 가스전 자산의 현금화와 직접적 연관이 없기 때문에, 원료가스 구매와 수송 부문에 손실이 발생하지 않도록 사전 조건이 충족되면 약정물량 미인수 시 비용은 액화설비 투자비용에 국한됨.

- 즉, 약정물량 미준수시 지불해야 하는 Take-or-pay(TOP) 페널티가 미국산 LNG 프로젝트에서는 전체 가스물량 대금이 아니라 액화서비스 이용료 수 준으로 낮아지는 효과가 있음.

□ 신축성 가치평가: 스프레드 옵션 모형

- 미국산 LNG 도입가격은 미국 내 가스현물시장인 Henry Hub(HH) 가격에 연동되는데, HH 가격이 너무 높으면 일시적으로 계약된 LNG 물량 인수를 포기하고 다른 곳에서 필요물량을 조달하는 옵션의 고려가 가능함.
 - 이 경우 액화설비 이용료(예약요금) 수준의 TOP 페널티는 지불해야 하지만, 미국산 LNG 도입계약에는 HH 가격이 상대적으로 높을 때 다른 현물가격 또는 유가연동 계약 등으로 전환할 수 있는 신축성이 내재되어 있음.
- 미국산 LNG 도입계약이 가지는 이러한 계약변경(또는 물량 미인수) 권리 가 내포하는 신축성의 가치를 실물옵션(real option) 관점에서 정량적인 옵 션가치로 분석함.
 - 이를 스프레드 옵션(spread option) 모형을 적용하여 평가함. 물량 미인수 시의 TOP 페널티는 실질적으로 액화설비 예약요금이 되는데, 이는 이러한 옵션권리를 가지기 위한 아메리카형 옵션의 가격으로 재해석할 수 있음.12)
- \circ HH 가격에 연동된 미국 LNG 도입계약의 가격은 대체로 ' $P_{(US\ LNG)}=a\times$ HH + 액화비용 + 수송비용'과 같은 형태를 띰.
 - 이를 일반화하여 t 시점의 단위(백만Btu)당 HH 가격을 H(t), 액화비용을 m, 수송비용을 n으로 표시하면, HH연동 계약가격 P_g 는 아래와 같음.13)

¹²⁾ 만기 이전에 언제라도 행사 가능한 '아메리카형 스프레드 옵션'은 한 단위 자산에 대해 다른 자산과 맞바꿀 수 있는 권리를 부여하는 옵션임. Margrabe(1978).

¹³⁾ 미국산 LNG 수출프로젝트의 선두주자인 Cheniere Energy의 Sabine Pass 프로젝트 매매계약(SPA) 등 대표적 인 HH연동 계약에서 연동계수(a)가 1.15, 액화비용(m)이 약 \$3/백만Btu, 수송비용(n)이 약 \$3/백만Btu 수준을

$$P_q(t) = aH(t) + m + n \tag{1}$$

○ 분석을 위해 HH 가격은 기하학적 브라운 과정의 확률과정을 따른다고 가 정하면,

$$dP_{q}(t) = \alpha_{q}P_{q}(t)dt + \sigma_{q}P_{q}(t)dw_{q}(t)$$
(2)

- 위 식에서 α_g 는 증가율(drift rate), σ_g 는 변동성(volatility rate)을 나타내며, 이들 파라미터는 시간에 대해 불변하는 것으로 가정함.
- $dw_g(t)$ 는 가격의 확률적 과정(stochastic process)을 발생시키는 위너과정 (Wiener process)을 나타냄.
- \circ 한편, 아시아지역의 현물가격지표로 인용되는 JKM(Japan Korea Marker) 가격을 $P_s(t)$ 라 하면, 이의 확률과정 역시 다음과 같이 표현될 수 있음.14)

$$dP_s(t) = \alpha_s P_s(t) dt + \sigma_s P_s(t) dw_s(t)$$
(3)

- 위너과정 $w_g(t)$ 와 $w_s(t)$ 는 서로 독립적인 것으로 가정함.15)
- \circ 소비처에서의 LNG의 시장가치, 즉 도입된 LNG의 소비처 판매가격을 $\tilde{P}(t)$ 라 할 때, 이 시장가치에서 도입가격 P_i (i=g,s)를 제하면 단위당 가스수익이 되며, 이를 π_i 로 표시하면 $\pi_i(t)=\tilde{P}(t)-P_i(t)$ 와 같음.
 - 따라서 HH연동 계약가격과 JKM 가격 간의 스프레드 옵션은 다음과 같이 구성될 수 있음.

보임. 예를 들어, 백만Btu당 HH 가격이 \$4, 액화비용이 \$3, 수송비용이 \$3이면, 도입가격은 1.15×4 + 3 + 3 = \$10.6이 됨. Cheniere Energy(2014)

¹⁴⁾ 흔히 현물구매는 DES(delivered ex-ship) 조건으로 거래되기 때문에 별도의 수송비용이 없다고 가정함.

¹⁵⁾ 최근 HH와 JKM의 가격동향을 보면 탈동조화한 것이 뚜렷이 관찰되기 때문에 $w_g(t)$ 와 $w_s(t)$ 의 독립성 가정을 무난히 받아들일 수 있음.

$$V(x,y) = \max_{\tau \in [0,\infty]} \exp_0 \left[e^{-\rho \tau} (\pi_s - \pi_g)_+ \right]$$

$$= \max_{\tau \in [0,\infty]} \exp_0 \left[e^{-\rho \tau} (P_g - P_s)_+ \right]$$
(4)

- (4)에서 τ 는 스프레드 옵션 행사 시점, 즉 HH연동 계약에서 JKM 계약으로 전환하는 시점을 나타내며, Exp_0 은 현재 t=0의 시점에서 기대연산자 (expectation operator)를 의미함.16)
- 위 식을 이용하여 HH연동 계약과 JKM (현물)계약 간의 스프레드 옵션에 서, HH계약가격에서 JKM가격으로 전환할 수 있는 행사경계(exercise boundary)는 다음과 같이 도출됨.

$$P_g^* = \frac{\hat{\theta} \Gamma}{\hat{\theta} - 1} (\rho - \alpha_g) p_s \tag{5)17}$$

- 따라서 만일 P_g 가 P_g^* 를 상회하게 되면, 즉, JKM 가격에 비해 HH연동 계약가격이 현격히 높은 수준에 도달하게 되면 해당 기간의 HH연동 물량을 도입하는 대신 JKM 현물로 전환하는 것이 최적이라는 것을 의미함.

□ 신축성 가치의 추정

○ 실증분석에서는 HH가격과 JKM가격을 활용하여 HH계약의 신축성 가치를 스프레드 옵션 관점에서 평가함.

$$V(x,y) = \left(\frac{x}{\hat{\theta}}\right)^{\hat{\theta}} \left(\frac{\hat{\theta}-1}{y}\right)^{\hat{\theta}-1}$$
 where $\hat{\theta} = \eta + \gamma$, $\eta = \frac{1}{2} - \frac{\alpha_g + \alpha_s}{v^2}$, $\gamma = \sqrt{\eta^2 + \frac{2(\rho + \alpha_g)}{v^2}}$, $\exists \vec{e} \mid \vec{x} \mid v^2 = \sigma_g^2 + \sigma_s^2$.

¹⁶⁾ 따라서 위 식은 할인율이 ρ 로 주어질 때, $\pi_s - \pi_g$ 의 기댓값을 현재가치화한 값과 0 중에서 큰 값을 택하는 것을 의미함.

¹⁷⁾ 식 (4)를 Ito's lemma를 적용하여 HJB 방정식(Hamilton Jacobi Bellman equation)을 도출한 후 해를 구하면,

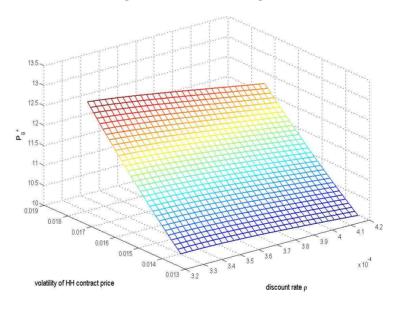
- 최근의 저유가 및 낮은 JKM 현물가격 상황에서는 현물 도입이나 유가연동 계약 대비 HH연동 계약의 장점이 다소 감소하였다고 평가할 수 있음.
- 그러나 국제 석유시장과 가스시장의 장기적 가격 변동성을 고려할 때에 HH연동 계약의 신축성 가치는 여전히 의미가 있음.18)
- 2009년 2월부터 2015년 8월까지의 HH 및 JKM 가격자료를 이용하여 증가 율과 표준편차를 추정한 후 α_i 와 σ_i 를 계산하면 <표 3>과 같음.19)

<표 3> JKM 현물가격과 HH연동 계약가격의 파라미터 추정 결과

	JKM 현물가격 $(i=s)$	HH연동 계약가격(i=g)
y_t 증가율	8.16207E-05	-0.0001
y_t 표준편차	0.015733	0.013194
계약가격 증가율 $lpha_i$	0.051346	-0.00341
계약가격 변동률 σ_i	0.248760	0.208616

 $[\]rho = 0.1$, $a_q = 1.15$, m = 3, n = 3, Q = 5, T = 20, $1/\sqrt{\Delta} = 1/\sqrt{250}$

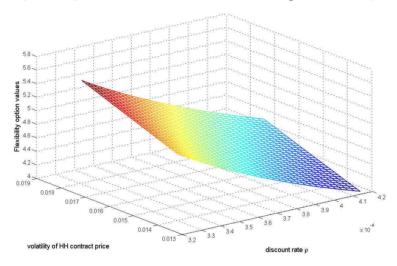
- \circ 추정한 기본 파라미터를 바탕으로 스프레드 옵션에서의 신축성 가치를 구하면, HH연동 계약에서 JKM 현물계약으로 전환할 수 있는 행사경계 가격 P_{g} *을 계산한 결과는 다음과 같음.
 - 가장 최근 JKM 가격(2015년 8월 12일 기준 JKM 현물 \$8)을 기준으로 볼때, 만일 HH연동 계약가격이 \$10.63 이상이 되면, HH연동 계약에서 JKM 기준 계약으로 전환하는 것이 최적인 것으로 나타남.
 - 이는 HH연동 계약가격과 JKM 현물가격 간의 스프레드가 \$2.63으로서, JKM 현물에 비해 약 33% 이상 HH연동 가격이 높을 경우 계약전환이 이루어질 수 있음을 의미함.20)

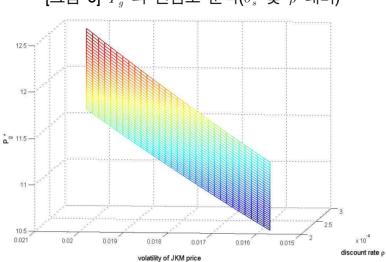

¹⁸⁾ 특히 20년 이상의 장기적인 기간구조를 갖는 LNG 계약은 계약의 이행과 탈퇴의 비가역성(irreversibility)이 크기 때문에, HH연동 계약의 스프레드 옵션 측면의 신축성은 더욱 의미가 있음.

¹⁹⁾ JKM 및 HH 가격 추세 및 단위근 검정 결과와 옵션모형에 대한 자세한 논의는 도현재(2015) 참조

²⁰⁾ 이러한 결과는 HH연동 계약에서 지불해야 하는 액화비용 \$3/백만Btu를 고려할 경우 나름대로 합리적인 수 준으로 평가할 수 있음.

- 아울러 HH연동 계약의 신축성의 가치는 \$4.26/백만Btu 수준인 것으로 추 정되었음.
- \bigcirc 액화비용과 수송비용에 대한 해지 분기가격(임계가격) P_q^* 의 민감도 분석 결과를 살펴보면, 액화비용(m)이나 수송비용(n)이 증가할수록 HH연동 계약 의 전환 분기가격이 낮아진 것으로 나타남.
 - 이는 액화 및 수송비용의 증가는 HH연동 계약가격이 다른 모든 조건이 일정한 상황에서는 IKM에 비해 덜 유리해지기 때문인 것으로 판단됨.
- \circ HH 가격의 변동성 (σ_g) 이 증가할수록 임계가격 P_g *는 증가함. [그림 1]은 임계가격 P_q^* 의 변동률 (σ_q) 의 민감도 분석 결과인데, σ_g 의 증가는 불확실 성의 증대를 의미하여 계약전환의 기회비용이 증가하기 때문임.21)




²¹⁾ 이는 실물옵션 문헌에서 불확실성의 증가가 옵션행사 기회를 줄인다는 이른 바 히스테러시스(hysteresis) 효 과와 관련이 있음.

- \circ [그림 2]는 HH연동 계약이 가지는 신축성 가치의 민감도 분석 결과임. HH 가격 변동률 σ_g 와 할인율 ρ 가 증가할수록 신축성 가치는 각각 증가하고 감소함.
 - 변동성 증가에 따른 신축성 가치의 증가는 변동성의 증가로 인해 HH연동 계약이 유연하게 다른 계약으로 전환할 수 있는 가치가 높아지기 때문임.

[그림 2] 신축성 가치의 민감도 분석(σ_a 및 ρ 대비)

- 할인율의 증가는 이와 같은 계약전환에 따르는 이익효과가 감소하는 것을 의미하기 때문에 HH연동 계약의 신축성 가치도 감소하는 것으로 나타남.
- \circ [그림 3]은 JKM 가격의 변동성 σ_s 와 ho에 대한 전환 임계가격 P_g^* 의 민감도 분석 결과를 보여줌.
 - HH계약의 대안이 될 수 있는 JKM 가격의 변동성이 증가할수록 P_g^* 가 증가한 것으로 나타남.
 - 아울러 σ_s 의 증가는 신축성의 가치도 증가시키되, HH연동 계약에서의 σ_g 의 증가 때보다 가파른 속도로 증가함.

[그림 3] P_a *의 민감도 분석(σ_s 및 ρ 대비)

- 한편, HH연동 계약을 전체 잔여 계약기간에 대해 해지하고, 유가연동 계 약으로 전환하는 경우를 상정해 볼 수 있음.22)
 - 동일한 기간의 브렌트유 가격을 대상으로 분석한 결과, 전체계약 전환의 임계가격은 앞서 살펴본 단기 전환모형의 임계가격보다 높게 나타남.23)

2. 발전용 수요 불확실성 대응의 비용 감소 효과

- 유연한 특성인 미국산 LNG의 시장 유입 영향의 하나로 현물시장 가격의 하향 안정화 효과를 기대할 수 있음.
 - 최근에는 기간계약(term contract)을 통한 도입가격에 비해 현물가격이 낮 은 수준을 보이고 있지만, 과거 실적을 살펴보면 LNG 현물가격은 대체로 기간계약에 비해 10% 정도의 가격 프리미엄을 지불한 것으로 나타남.

²²⁾ 전 기간에 걸쳐서 계약에서 탈퇴하는 경우의 개연성은 낮지만, 일종의 기준점 역할을 한다는 점에서 분석의 의미가 있음.

²³⁾ 이러한 결과는 장기계약 전체의 전환이라는 비가역적 행사비용이 반영된 것으로 평가됨.

- 현물거래에 적합한 미국산 LNG의 시장 유입은 이러한 현물가격 프리미엄의 형성을 억제하는 효과가 있음.
- 이러한 효과는 특히 우리의 발전용 가스수요의 불확실성에 따른 LNG 현물 구입 시 현물가격 프리미엄 부담의 완화를 통해 가늠해볼 수 있음.
- 경제급전 원칙에 따라 첨두부하를 담당하고 있는 LNG 발전은 여러 수요 즉 및 공급 측 불확실성 요인에 따라 발전량의 변동이 큼.
 - 전력수요 오차, 원전건설 등 다른 전원설비 확충 계획 지연 등 여러 요인 에 의해 LNG 발전량이 영향을 받게 됨.
 - 또한 대기환경 보호 및 온실가스 감축 목표 달성을 위한 가스수요 증가의 가능성도 상존함.
- 여러 불확실성 요인 중 원자력 및 신재생 발전과 관련된 불확실성 요인을 일부 가정하여 가스수요 변동폭을 시산해본 결과, 연도별로 차이를 보이지 만 연간 약 100~650만 톤의 수요 증가가 나타날 수 있음.
 - 제7차 전력수급계획 대비 원전의 계속운전 미승인, 계획된 원전의 준공시 기를 2년씩 지연, 신재생 RPS 의무이행률 미달을 반영한 결과, 원자력 및 신재생 발전량은 감소분만큼 석탄과 가스 발전량이 증가하게 됨.
 - 연도별로 다르나, 가스가 석탄보다 추가적으로 1.8~8.4배 더 많이 발전하는 것으로 나타남.
- 과거 경직적인 LNG 시장 상황에서는 잉여물량의 TOP 페널티가 높아서 이러한 수요 증가에 대응하기 위해서는 높은 프리미엄을 지불하며 현물시 장에서 필요물량을 조달하는 것이 주요 대안이었음.
 - 그러나 미국산 LNG의 시장 유입으로 유동성이 증가하면 현물 및 단기물 량 가격의 프리미엄 형성 폭을 억제하게 되어, 이는 가스수요의 불확실성

- 이 초래할 수 있는 도입비용의 부담을 감소시키는 효과를 낳게 됨.
- 또한 앞서 논의한 바와 같이 미국산 LNG는 재판매 및 트레이딩이 가능하여 잉여물량의 처분이 용이하다는 장점이 있음.
 - 이런 특성은 잉여물량의 보유에 따른 페널티가 다른 지역 프로젝트의 경우 처럼 높지 않다는 점을 의미하여, 가스수요의 가변성이 높은 상황에서도 공급 안정성을 담보할 수 있는 좋은 기회를 제공함.

Ⅳ. 시사점 및 정책 제언

- □ 미국에서 추진되고 있는 다수의 LNG 수출 프로젝트는 경직적인 국제 가스 거래 관행을 변화시키는 주요 요인으로 작용할 전망이며, 그에 따른 기회와 리스크에 대비할 필요가 높음.
 - 목적지 제한이 없는 미국산 LNG는 현물거래에 적합한 속성을 가지기 때문에 LNG의 재판매 및 차익거래를 확대하고, 경직적인 LNG 계약조건을 완화하여 LNG 거래관행의 개선을 촉발하는 중요한 전기가 될 것임.
 - 이는 아시아지역에서 높은 가스가격을 지불하는 '아시아 프리미엄'을 제거하는 긍정적인 요인으로 작용할 수 있음.
 - 특히 재판매를 제약하지 않는 도입조건은 과거 수동적으로 LNG를 인수하여 소비만 하던 역할에서, LNG를 판매하는 공급자 또는 트레이더로서의 사업영역에 진출할 수 있는 기회를 제공함.
 - 또한, 특정 계약이나 수요처에 묶이지 않은 LNG 물량이 증가하여, LNG 시장의 유동성이 높아지면서 현물가격의 안정화와 공급 안정성 증대 등의 긍정적 효과도 기대됨.
 - 미국산 LNG의 신축성 가치는 계약한 LNG 인수를 포기할 수 있는 옵션에 서 나오는 가치 및 원유가 등 기존 가격지표에서 다원화하여 더 비용효과 적인 LNG 조달 방안을 선택할 수 있는 가치로 요약될 수 있음.
 - 액화비용에 그치는 TOP 페널티 및 재판매가 자유로운 미국산 LNG는 잉 여물량의 페널티 위험을 크게 낮춰줌.
 - 수요가 예상보다 낮게 시현되는 경우에도 재판매가 가능하기 때문에 비용 부담이 크지 않고, 오히려 재판매 활동을 통한 트레이딩의 경험 축적을 통

해 더 효율적인 공급물량 확보 및 관리가 가능해질 수 있음.

- 이러한 점에서 미국산 LNG 도입은 가스 수요의 불확실성과 변동성이 높은 우리 가스시장에 큰 도움이 될 수 있음.
- 한편 미국의 Tolling 모델은 일반적으로 액화설비의 가동 차질에 대해 보 상하지 않는다는 점에서 전통적인 LNG 개발모델에 비해 더 큰 공급물량 리스크에 노출되게 됨.
 - 이에 대한 대응책으로서도 충분한 공급물량을 효율적으로 조달·판매할 수 있는 트레이딩 역량을 제고하는 것이 중요함.
- 2011년 이후 저유가 시기가 도래하기 직전까지 아시아지역의 가스소비자들 은 다른 지역에 비해 현저히 높은 가스가격을 지불하는 '아시아 프리미엄' 의 불이익을 받았음.
 - 이는 아시아 각국 내 가스거래시장의 부재 및 이에 따른 아시아지역 내 거 래 부재에 기인함. 즉, 지역 내 가스수급 상황이 반영된 가격지표의 부재로 유가연동 가격체계가 지속되어 세계 지역 간 가스가격 수렴을 제약함.
 - 향후 이 같은 상황이 재현되지 않도록 아시아지역 내 가스수급을 반영할 수 있는 가격지표의 개발이 필요하며, 이를 위해 지역 내 유동성 있는 현물시장 개설 및 거래 활성화가 필요함.
 - 이미 중국, 일본, 싱가포르 등 주변국들은 자국을 중심으로 지역 내 가스거 래허브를 구축하기 위해 각기 선물시장 개설 및 거래 활성화를 적극 추진 하고 있음.
 - 그러나 우리나라는 지리적 위치와 물리적인 인수터미널 여건 등 지역 내대표적 거래허브 구축에서 유리한 상황임에도 불구하고 이러한 움직임에서 뒤처져 있는 상황임.

- 또한 최근 LNG 공급물량이 확대되고 최종 소비처를 찾지 못한 LNG 물량들로 LNG 거래시장의 활성화가 더욱 가속화되며, 아시아의 기존 수입자들도 확보한 일부 물량을 판매하는 공급자로 변모하는 모습을 보이고 있음.
- 최근 국제 LNG 가격의 변동성이 확대되고, 셰일가스 개발로 수급여건이 빠르게 변화하며, 전력・가스 등 에너지부문 간 산업경계가 허물어지며 재편되는 상황임.
 - 이러한 추세 및 환경변화에 비추어 볼 때 우리의 가스산업 환경은 경직적 이며, 외부변화에 대응하기에 제한적인 요소가 많은 것이 현실임.
 - 특히 경직적인 산업구조 및 독점체제를 유지하는 규제로 인해 직도입사업 자 간 국내 가스거래가 금지되어 있음에 따라, 가스 구매비용의 절감 및 가스 확보의 유연성에 상당한 제약이 있음.24)
- 국내 가스 거래 활성화를 위한 규제 완화 및 직도입 확대를 통해 장기적으로는 효율적이고 신뢰성 있는 국내 가스시장 및 지역 내 가스가격 지표가 형성될 수 있는 기반 마련이 필요함.
 - 다수 시장참여자 간 상호작용이 배제된 공급중심의 독점체제로 인해 가스 산업뿐 아니라 전력 등 에너지산업 전반의 발전이 저해되는 측면이 있음.
 - 특히 수요규모가 큰 발전용 등 대규모 수요자들은 자신들의 소비패턴과 필요에 맞는 LNG 도입을 강구하며, 빠르게 변화하는 국제 가스시장 환경에서 스스로 연료가격 변화에 대응하는 능력의 배양과 전략이 필요함.

²⁴⁾ 현재 직도입사업자들은 잉여부족물량을 서로 간에 판매할 수 없고 교환만 가능하기 때문에, 값싼 물량의 확보 기회가 있더라도 국내에서 수요대비 잉여물량을 처분할 방법이 없어 효율적인 해외 구매 및 국내 거래가 제약되는 상황임.

< 참고자료 >

- 도현재, 「미국산 LNG 도입환경과 국내 가스시장 파급효과 분석」, 기본연구보고서 15-16, 에너지경제연구원, 2015.12.
- Cheniere Energy, "Cheniere Energy", Credit Suisse Global Credit Products Conference, Sep. 18, 2014.
- Citi Research, "LNG Landscape", March 8, 2015.
- Drummond, M. A., "Relative Valuations of Merchant and Tolling LNG Models Considering Alternative Capital Structures", *Thesis for Master of Science in Earth and Energy Resources and Master of Business Administration*, The University of Texas at Austin, Dec. 2013.
- LNG Business Review, "US feed gas 101 Finding and arraging feed gas to US LNG plants", March 2015a.
- LNG Business Review, "US feed gas 101 Managing the infrastructure: pipelines, mid-stream, storage", April 2015b.
- Margrabe, W., "The Value of an Option to Exchange One Asset for Another", *Journal of Finance*, Vol. 33, pp. 177 186, 1978.
- Miles, Steven and Jason Bennett, "LNG Export Tolling Facilities New Frontiers, New Solutions", LNG Hub, 2014.10.31.
- Weems, Philip R. and Monica Hwang, "Overview of issues common to structuring, negotiating and documenting LNG projects", *Journal of World Energy Law and Business*, Vol. 6, No. 4, pp. 267~299, 2013.

정책 이슈페이퍼 16-09 미국산 LNG 도입환경과

국내 가스시장 파급효과 분석

2016년 7월 29일 인쇄

2016년 7월 29일 발행

저 자 도현재

발행인 박주헌

발행처 에너지경제연구원

44543 울산광역시 종가로 405-11

전화: (052)714-2114(代) 팩시밀리: (052)-714-2028

등 록 1992년 12월 7일 제7호

인 쇄 크리커뮤니케이션 (02)2273-1775