이슈페이퍼

KEEI ISSUE PAPER

정책 이슈페이퍼 19-12

Ⅰ 전기자동차 충전시스템에서의Ⅰ 신재생에너지 활용 방안 연구

이승문 · 김기환 · 이성재

정책 이슈페이퍼 19-12

전기자동차 충전시스템에서의 신재생에너지 활용 방안 연구

이승문·김기환·이성재

목 차

- I. 배경 및 문제점 / 1
- Ⅱ. 경제성 분석 / 3
- Ⅲ. 정책 제언 / 13
- Ⅳ. 기대 효과 / 20
- 〈참고자료〉 / 21

배경 및 문제점

- □ 수송 부문의 이산화탄소 배출량은 전체 이산화탄소 배출량보다 더 빠르게 증가
 - 연료 연소(fuel combustion) 기준, 세계 이산화탄소 배출량은 2008년 29.4십억 톤에서 2015년 32.3십억 톤으로 연평균 1.4% 증가하였으며. 수송 부문은 6.6십억 톤에서 7.7십억 톤으로 연평균 2.3% 증가하였고. 수송의 도로 부문은 4.8십억 톤에서 5.8십억 톤으로 연평균 2.8% 증가함.1)
 - 세계 이산화탄소 배출량에서 수송 부문과 도로 부문이 차지하는 비중은 2008년 각각 22.5%, 16.5%에서 2015년 24.0%, 17.9%로 증가함.2)
 - 연료 연소 기준, 우리나라의 이산화탄소 배출량은 2010년 557.3백만 톤에서 2015년 592.8백만 톤으로 연평균 1.2% 증가하였으며, 수송 부문은 84.7백만 톤에서 93.5백만 톤으로 연평균 2.0% 증가함.3)
 - 국내 이산화탄소 배출량에서 수송 부문이 차지하는 비중은 15.2%에서 15.8%로 증가함.4)
- □ 주요국은 수송 부문의 이산화탄소 배출량을 감축하기 위하여 친환경자동차, 특히 전기자동차 보급 정책을 시행
 - 전기자동차의 온실가스 배출은 전원 믹스에 따라 크게 변함
 - McLaren et.al.(2016)는 전기자동차의 온실가스 배출량은 전원믹스 변화에 따라 크게 변화할 수 있음을 보임.5)

¹⁾ IEA, CO₂ Emissions from Fuel Combustion 2010, 2017

²⁾ IEA, CO₂ Emissions from Fuel Combustion 2010, 2017

³⁾ 온실가스종합정보센터(2017, p.60)

⁴⁾ 온실가스종합정보센터(2017, p.60)

⁵⁾ 이산화탄소 배출량이 많은 전원믹스를 갖는 미중서부 지역에서의 주행 중 이산화탄소 배출량은 대형전기자동차가 소형 내연기관 자동차보다 높을 수 있다. Global Auto News(유일한, '환경을 덜 오염시키는 자동차를 위해' 유일한, 2018.10.30. 마지막 접속일: 2018.10.30.)와 FT(Jessika Trancik, Geoffrey Supran and Marco Miotti, 'Reality is that most EVs emit less CO2 than petrol cars over their lifetimes, 마지막 접속일: 2018.10.30.) https://www.ft.com/content/d14b6c8a-c61e-11e7-b2bb-322b2cb39656

- 국내의 경우, 석탄 39%, 천연가스 23%, 원자력 29%, 기타 9%의 전원믹스와 2014년 자동차 등록대수를 기준으로 연료 생산부터 차량운행까지의 전과정 평가에서 km당 전기자동차는 94g, 하이브리드차는 141g, 경유차는 189g, 휘발유차는 192g의 온실가스를 발생시키는 것으로 나타남.6)
- 수송 부문에서 전기자동차를 이용하여 온실가스를 저감하기 위해서는 이산화탄소를 덜 배출할 수 있는 전원믹스를 고려하여야함.
 - Miotti et.al.(2016, p.10795)은 지구 평균 온도 상승 2℃ 제한 목표를 달성하기 위해서는 수송 부문에서 2050년까지 완전하게 이산화탄소 무배출(carbon-free) 전원으로 생산된 전력을 전기자동차에 공급하여야 한다고 주장함
- □ 본 연구의 목적은 전기자동차 충전시스템에서의 신재생에너지를 활용하는 방안을 연구하는 것임
 - 전원믹스에서 이산화탄소를 줄이거나 완전히 배출하지 않기 위해서는 원자력 또는 신재생에너지로 전력을 생산하여야 함
 - 원자력의 경우 에너지 전환 시대로의 진입과 안전한 에너지에 대한 욕구가 증대되는 현실에서 이를 대폭 증대시키는 정책을 추진하기에 는 어려운 점이 존재함
 - 따라서 장기적 관점에서는 신재생에너지로부터 발전된 전력을 전기자동차에게 공급하는 것이 수송 부문에서 온실가스를 줄이는 효율적인 방안이 될 수 있음
 - 하지만, 문제점은 경제적 측면에서 비싼 신재생에너지를 전기자동차에 공급하는 것이 비효율적이라는 것임.
 - 전기자동차 보급 대수가 미미하고 충전시장이 성숙하지 않은 단계에서 그리고 신재생에너지가 비싼 현실에서 전기자동차 충전을 위한 신재생에너지 활용은 너무 비효율적일 수 있음
 - 본 연구는 중장기적 관점에서 신재생에너지를 충전시스템에서 활용할 수 있는 방안을 제안함

⁶⁾ 환경부 보도자료(2015.6, '연료부터 운행까지 온실가스 전과정 측정 결과, 친환경차 배출량 내연차 절반 수준')

² 정책 이슈페이퍼 19-12

경제성 분석

1. 경제성 분석을 위한 가정

- □ 신재생에너지를 활용한 전기차 충전 사업의 경제성을 판단하기 위해 몇 가지 비교 모델을 구축
 - 모델 구축을 위해 몇 가지 가정을 설정함.
 - 모델은 야외 주차장에 100kW 용량의 지붕형 태양광 패널과 급속 전기차 충전기 2기를 설치함.
 - 태양광으로 생산된 전기를 전기차 충전에 사용하고 충전하는 전기차가 없는 경우에는 남는 전기를 한전에 보낸 뒤 차후에 SMP+REC를 받는 것으로 구성함.

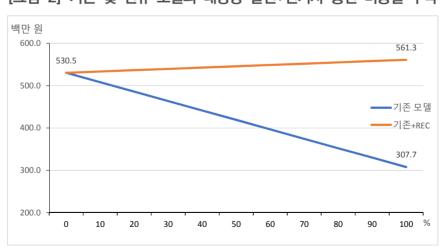
= DC/DC converter DC/AC inverter Control Center DC/DC chargers

[그림 1] 태양광 활용 전기차 충전 비즈니스모델

자료: Pedro Nunes at. al.(2016) The use of parking lots to solar-charge electric vehicles p.683

〈표 1〉 태양광 발전을 활용한 전기차 충전 사업 모델 가정

모델 가정 항목	가정 값	모델 가정 항목	가정 값
급속 충전 가격	313.1원/kWh	10년 뒤 급속 충전기 가격	2천5백만 원/대
태양광 설치 용량	100kW	초기 급속충전기 보조금	3천5백만 원/대
하루 평균 태양광 발전 시간	3.7시간	급속충전기 O&M 비용	설치가격의 5%
태양광 설치 장소	주차장(REC 1.5)	급속충전기 월별 전기 기본요금	129,000원
평균 SMP 가격	88.61원/kWh	평균 전기 사용량 요금	94.06원/kWh
평균 REC 가격	103.18원/kWh	태양광 설치 비용	161백만 원
급속충전기 가격	5천만 원/대	태양광 연간 O&M 비용	224만 원
충전기 교체 주기	10년	태양광 발전 효율 하락율	0.5%
태양광패널 수명	25~30년	할인율	5.5%


- 주요 가정들을 살펴보면, 급속 충전 요금은 현재 할인된 가격인 173.8원/kWh가 아닌 원래 책정된 요금인 313.1원/kWh로 가정함.
- 급속 충전기의 가격은 대당 5,000만 원으로 책정하였다. 이는 일반적인 가격이며, 대신 10년 뒤에 사용연한이 끝나 새롭게 설치해야 할 때는 가격이 절반으로 줄어들 것이라고 가정함.
- 초기 급속충전기의 보조금은 대당 3,500만 원으로 책정하였으며, 급속 충전기의 용량은 현재 대부분의 급속 충전기 용량인 50kW로 가정하여 충전기 기본요금도 2580×50=129,000원으로 책정함.
- 충전에 대한 평균 전력 사용량 요금은 94.06원/kWh로 책정함.
- * 해당 요금은 한전 전기차 충전 요금에서 고압/선택2의 계시별 요금제에서 경부하시간대를 제외한 중간부하, 최대 부하 시간대의 시간별·계절별 가중평균을 통해 구한 값임.
- * 경부하를 제외한 이유는 경부하 시간대에 야외 주차장에서 급속 충전을 하는 경우가 드물기 때문이며, 전기자동차 충전행태분석에 관한 연구에 따르면 공용 주차장에서 경부하 시간대의 전기차 급속충전 충전량은 최대부하 및 중간부하 시간대 충전량 대비 매우 적은 것으로 나타남.7)
- 태양광 설치비용과 연간 O&M 비용은 이철용(2017)⁸⁾의 연구 결과에 나타난 워가를 바탕으로 산정함.

⁷⁾ 박규호 외 3명(2017) 전기자동차 충전행태분석, 대한교통학회

⁸⁾ 이철용(2017) 기본연구보고서 17-27 태양광 원가분석을 통한 균등화 비용 국제 비교 분석

2. 태양광 발전을 활용한 전기차 충전 사업 경제성 분석

- □ 태양광 발전사업과 충전 사업의 통합 비즈니스 모델 구축
 - 현 제도 하에서, 태양광 발전사업, 전기차 충전 사업을 합치는 것보다 각각의 사업을 따로 하는 것이 수익적인 측면에서는 보다 효율적임.
 - 현 제도 아래에서 태양광에서 생산된 전력을 전기차 충전에 사용하는 양이 적어지면 적어질수록 SMP+REC를 통해 얻는 수익이 더 늘어나면서 총 수익 또한 더 늘어남.
 - 원인은 전기차 충전에 사용되지 않은 태양광 발전 전력은 SMP+REC 라는 추가적인 수익이 발생하기 때문임.
 - [그림 2]에서 충전 비중이 0%일 경우에 기존 모델의 수익이 가장 높은데, 이때는 태양광 발전사업과 전기차 충전 사업을 별개로 진행 하여 각각의 수익을 합산한 것과 같음.
 - [그림 2]의 기존 모델 수익 그래프는 태양광 발전 사업자가 태양광 발전을 활용한 전기차 충전 서비스 사업을 시행할 유인이 없음을 보여줌.

[그림 2] 기존 및 신규 모델의 태양광 발전+전기차 충전 비중별 수익

기존 모델: 충전으로 사용된 태양광 전력에 REC 미지급 기존 모델+REC: 충전으로 사용된 태양광 전력에 REC 지급

- 태양광 발전 전력을 전기차 충전에 사용하였을 경우에도 REC를 제공할 시, 태양광 사업자는 충전 사업을 통합할 유인이 생김([그림 2]의 기존모델 +REC).
 - 태양광 발전+전기차 충전이 0%인 경우에는 각각의 사업을 따로 진행했을 때 얻게 되는 수익과 같고, 태양광 발전+전기차 충전 비중이 높아질수록 수익도 더욱 증가하여 100%를 달성할 경우 수익이 가장 높아줘.
 - 현재는 신재생에너지를 활용해 직접 생산한 전력을 직접 판매하는 것도 불가능하고 이를 전기차 충전에 활용하였을 경우에 REC에 상응하는 어떤 혜택을 받을 수 있는 정책 또한 마련되어 있지 않음.
 - 만일 신재생발전 전력을 REC를 받고 전기차 충전에 직접 판매할 수 있다면, 신재생발전사업자는 새로운 이익 창출 기회를 얻을 수 있음.
 - 정부는 신재생에너지 보급 확대와 전기차 충전 인프라 확산의 두 가지 정책 목표를 동시에 추구할 수 있을 것으로 기대됨.

□ REC 가격 변화에 따른 민감도 분석

- 불확실성을 반영하고자 REC 가격과 수익 간의 민감도 분석을 진행함.
 - REC 가격이 가질 수 있는 다양한 추세에 관한 시나리오 분석을 진행할 수 있겠으나, 편의상 고정된 평균 REC 가격 파라미터가 변할 때 수익에는 얼마나 영향을 미칠지를 분석함.
 - REC 혜택을 전혀 받지 않는 태양광+전기차 충전(REC X) 사업 모델과 일반 전기차 충전 사업 모델의 경우에는 REC 가격이 변하더라도 수익에는 변화가 없음.
 - 태양광+전기차 충전(REC O) 사업 모델과 SMP+REC를 받는 발전사업 모델에서는 REC 가격 하락과 함께 수익도 함께 감소함.
 - 발전사업자의 경우, 103.18원/kWh의 약 52% 수준으로 가격이 하락하면 10년차 누적 현가 수익이 (-)로 변하며, 17% 수준으로 가격이하락하면 20년차 누적 현가 수익마저도 (-)로 변함.

- 이는 태양광+전기차 충전(REC O) 사업 모델에서도 동일하나, 기본적으로 전기차 충전으로 얻는 수익이 있기 때문에 수익 감소율은 상대적으로 크지 않은 것으로 나타남.

〈표 2〉 REC 가격 변화에 따른 민감도 분석

(단위: 천 원)

100	100% 전기차 충전(500kWh), 태양광 발전(370kWh) 충전요금:313.1원/kWh				
REC	연차 누적	태양광+전기차	태양광+전기차	발전사업자	전기차 충전
NEC	현가 수익	충전(REC X)	충전(REC O)	(SMP+REC)	사업자
103.18	10년차	137,340	300,218	77,263	202,563
(100%)	20년차	307,728	561,296	209,467	321,079
82.54	10년차	137,340	267,642	44,688	202,563
(80%)	20년차	307,728	510,583	158,754	321,079
61.91	10년차	137,340	235,067	12,112	202,563
(60%)	20년차	307,728	459,869	108,040	321,079
41.27	10년차	137,340	202,491	-20,463	202,563
(40%)	20년차	307,728	409,155	57,326	321,079
20.64	10년차	137,340	169,916	-53,039	202,563
(20%)	20년차	307,728	358,441	6,613	321,079
0	10년차	137,340	137,340	-85,614	202,563
(0%)	20년차	307,728	307,728	-44,101	321,079

□ 시사점

- 태양광 발전을 이용한 전기차 충전 사업의 경제성 분석을 통해 다음과 같은 시사점을 얻을 수 있음.
 - 첫째. 현 제도 아래에서 전기차 충전 사업자 입장에서는 태양광 발전을 활용할 유인이 없으며, 태양광 발전사업자 입장에서도 태양광 발전에 전기차 충전을 접목시킬 유인이 없음
 - 둘째, 태양광 발전 전력의 전기차 충전의 직접 판매와 REC 지급이 동시에 이루어진다면, 태양광 발전사업자에게 새로운 이윤 획득의 기회를 제공할 수 있음.

- 셋째, 태양광 발전사업자의 새로운 비즈니스 기회는 신재생에너지 보급과 충전 인프라 보급 두 가지 정책 목표에 긍정적으로 작용할 수 있음.

3. 태양광 발전, ESS를 활용한 전기차 충전 사업 경제성 분석

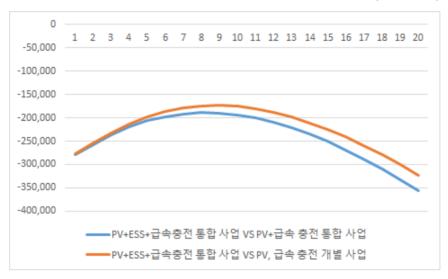
- 태양광 설치와 할인율 가정은 앞 절의 가정을 따름.
 - 모델의 단순화를 위해서 ESS 충전용 전력은 모두 건물 내에서 소비한다고 가정함.
 - 본 절의 기본 모델은 태양광 100kW, ESS 300kWh, 급속 충전기 2기임.
 - 하루 전기자동차 충전 용량은 370kWh이고 초기 투자 비용은 자기자본을 이용한다고 가정함.

〈표 3〉 경제성 분석을 위한 ESS 가정

모델 가정 항목	가정 값
ESS 용량	300kWh
ESS 설치비	3억 원
ESS 효율	90%
ESS 성능 하락률	1.7%
 ESS 운영 및 유지비(O&M)	설치비의 1.5%
 보험료	40만 원
소내전력 비용	40만 원

- 자기 소비용 ESS에 태양광을 설치하여 충전용으로 사용할 수 있을 경우를 상정함.
 - 본 시나리오에서 경제적 편익은 충전 수익과 전기료 절감이 있음.9)
 - 초기 투자비용은 약 5억 원이고 자기 자본으로 운영된다고 가정함.

⁹⁾ 전기저장장치 활용촉진 전기요금제도는 2019년까지 시행되고(산업통상자원부 보도자료, 2016.11.28.) 신재생에너지, ESS 결합 전기요금 할인 제도는 2020년까지 시행될(한국전력 보도자료, 2017.4.27., p.2) 예정이므로 경제성 분석에서 제외하였다.


- 본 시나리오에서 투자비용을 회수하는 시기는 사업 시작 후 12년이 지나야 함.

□ ESS, PV, 충전사업 결합 모형 비교 분석

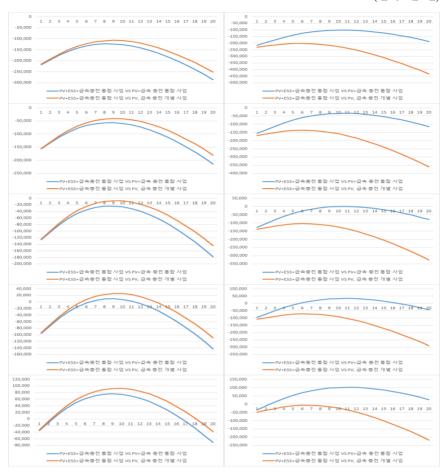
- PV+ESS+급속충전기 사업 모델은 사업자가 각각 신재생에너지 사업과 충전 사업을 했을 경우의 경제성보다는 현격하게 낮아짐.
 - PV+ESS+급속충전은 태양광, ESS, 급속 충전을 합쳐서 하는 사업을 의미하고, PV+급속충전은 앞 절에서 소개한 태양광과 급속충전을 동시에 하는 사업을 의미함.
 - 태양광 발전 전력을 충전용으로 사용할 때 REC 지급 시. 경제성이 가장 높은 사업은 태양광과 충전 사업을 같이하는 사업임
 - 다음이 태양광과 충전 사업을 따로 하는 사업이고 마지막 순위가 태양광, ESS, 충전 사업을 통합해 하는 사업임
 - 그러므로 REC를 지급하더라도 현재 충전 사업에 ESS를 도입하는 경우는 경제성이 없게 됨.

[그림 3] 사업 형태 간 연간 누적 수익 차이 충전용 신재생에너지 전력에 REC 지급하는 경우

(단위: 천 원)

주: PV+ESS+급속충전 통합 사업 VS PV+급속 충전 통합 사업 =
[(PV+ESS+급속충전 사업의 연간 누적 수익) - (PV+급속충전 사업의 연간 누적 수익)]
PV+ESS+급속충전 통합 사업 VS PV, 급속 충전 개별 사업 =
[(PV+ESS+급속충전 사업의 연간 누적 수익) - (PV, 급속충전 개별 사업의 연간 누적 수익)]
누적 수익 차이가 '-'라는 것은 PV+ESS+급속충전 통합 사업의 경제성이 PV+급속충전 통합 사업의 경제성보다 낮다는 의미

□ 배터리 가격 민감도 분석


- 신재생에너지를 활용한 충전시스템에 ESS를 도입해서 경제성 분석을 할 시. ESS 도입의 경쟁력에 가장 큰 영향을 미치는 요인은 설치비용임.
 - REC, 충전 가격, 충전 용량 등의 요인은 경제성 분석에서 고려한 모든 시나리오에서 중립적으로 영향을 미칠 것임.
 - [그림 5]는 ESS 설치비용 변화에 따른 사업 유형별 경제성을 비교한 그림으로, 오른쪽 열은 REC 지급하는 경우를, 왼쪽 열은 REC 지급 하지 않는 경우를 나타냄.
 - 첫째 행은 ESS 설치 비 20% 할인 경우를, 둘째 행은 ESS 설치 비 40% 할인 경우를, 셋째 행은 ESS 설치 비 50% 할인 경우를, 넷째 행은 ESS 설치 비 60% 할인 경우를, 다섯째 행은 ESS 설치 비 80% 할인 경우를 나타냄.

- PV+ESS+급속충전 통합 사업 VS PV+급속 충전 통합 사업은 [(PV+ESS+급속충전 사업의 연간 누적 수익)-(PV+급속충전 사업의 연간 누적 수익)]을 의미하고 파랑색선으로 나타냄.
- PV+ESS+급속충전 통합 시업 VS PV, 급속 충전 개별 시업은 [(PV+ESS+급속충전 사업의 연간 누적 수익)-(PV, 급속충전 개별 사업의 연간 누적 수익)]을 의미하고 주황색선으로 나타냄.
- [그림 5]에서 볼 수 있듯이, 신재생에너지를 활용한 충전시스템에 ESS를 활용하기 위해서는 ESS 설치비용이 약 60% 정도 하락하여야 함.
- 연도별 배터리팩 가격 추이 및 전망에 따르면, 2017년 현재, 배터리 가격은 \$209/kWh이며, 2020년대 중후반 정도에 배터리 가격이 2017년 수준의 40%가 될 것으로 전망됨.10)
- 배터리 가격 하락률이 타 부품보다 높은 것을 고려하면 2030년 이후에 충전시스템에서 ESS 활용의 경제성을 확보할 수 있을 것으로 판단됨.

¹⁰⁾ BNEF, 2017.12.5. 2017 Lithium-Ion Battery Price Survey p.2, p.9

[그림 4] 사업 형태 간 연간 누적 수익 차이 민감도 분석

(단위: 천 원)

주: 오른쪽 열: REC 지급하는 경우, 왼쪽 열: REC 지급하지 않는 경우

첫째 행: ESS 설치 비 20% 할인 경우, 둘째 행: ESS 설치 비 40% 할인 경우 셋째 행: ESS 설치 비 50% 할인 경우, 둘째 행: ESS 설치 비 60% 할인 경우 다섯째 행: ESS 설치 비 80% 할인 경우

PV+ESS+급속충전 통합 사업 VS PV+급속 충전 통합 사업=[(PV+ESS+급속충전 사업의 연간 누적 수익) - (PV+급속충전 사업의 연간 누적 수익)], 파랑색

PV+ESS+급속충전 통합 사업 VS PV, 급속 충전 개별 사업=[(PV+ESS+급속충전 사업의 연간 누적 수익) - (PV, 급속충전 개별 사업의 연간 누적 수익)], 주황색

□ 시사점

- 현 상황에서 ESS와 신재생에너지를 활용한 충전시스템을 도입하는 것은 경제성이 부족함.
 - 전술한 바와 같이 타 사업 모델 대비 경제성을 얻기 위해서는 2030년이 지나야 가능할 것으로 보임.

- 그러므로 현재 전기자동차 충전시스템에 ESS를 무리하게 도입하기보다는 여러 실증사업을 통해서 태양광. 충전시스템, ESS 결합 시 통합 충전 시스템 운영과 통합에 따른 문제점에 대한 여러 자료를 축적하는 것이 중요함.
- 이를 위해서 현재 제주에서 시행되고 있는 EV카페와 같은 실증사업을 주요 거점 지역으로 확대할 필요가 있을 것으로 판단됨.

정책 제언

1. SWOT 분석

- □ 전기자동차 충전시스템에서 신재생에너지 도입의 SWOT 요소
 - 현재 충전 시장과 신재생에너지 시장을 고려한 기초적인 SWOT의 요소 들을 도출함

〈표 4〉 전기자동차 충전시스템에서 신재생에너지 도입의 SWOT 요소

구분	요소	
	수송부문 온실가스 저감	
<u>⊘⊟(Strengtri)</u>	신재생에너지 확대	
	경제성 부족으로 충전 사업 모델 부족	
Otat(Mackaca)	전기자동차 및 충전 시장 미성숙	
약점(Weakness)	기술적 문제(안전 점검, 인터페이스 구축 등)	
	V2G 관련 기술 및 제도 미구축	
	에너지 신사업 활성화 정책	
	신재생에너지 발전사업자 수익성 확보	
기회(Opportunity)	전기자동차 보급 확대	
	신재생에너지 보급 확대	
	배터리 가격의 하락	
	전력소매 판매 시장의 경직성	
위협(Threat)	기술에 대한 불확실성	
	V2G 홍보 부족에 따른 인식 부재	

○ SO 전략: 충전 시장의 활성화 및 인프라 확충

- 전기자동차와 신재생에너지 보급은 지속적으로 확대될 것이며, 배터리 가격은 지속적으로 하락할 것임.
- 전기자동차와 신재생에너지를 통한 에너지 신사업에 대한 기회도 증가할 전망이며, 이를 극대화하기 위해서는 먼저 충전시장이 활성화 되어 민간 자본의 투자가 활발해져야 함.
- 충전 시장과 민간 투자 활성화를 위해 충전 시장에서 경제성이 확보 되어야 함.

○ WO 전략: 정부의 지원

- 신재생에너지 및 충전 시장이 갖는 약점은 경제성 문제로 수익성 있는 사업 모델이 부재하다는 것임.
- 충전용 신재생에너지 전력에 대해서도 보조금을 지원하고, 신재생에너지 로부터 나온 전력을 충전에 사용한 소비자에게도 혜택을 주어야 함.

- ST 전략: 신재생에너지 발전 사업자와 충전 사업자와의 결합
 - 충전을 위해 신재생에너지를 설치하였다 하더라도 그 전력은 한전을 통해 거래되어야 함.
 - 신재생에너지와 충전 시설의 연결 시 문제점을 보완하기 위해서 상계거래를 활용할 수 있도록 해야 함.
- WT 전략: 기술적 문제 해결
 - 신재생에너지를 충전 시스템에 도입 시 고려되어야 할 기술적 문제점들도 존함.
 - V2G에 대한 제도 및 기술적 문제들에 대한 해결 방안도 고려해야 할 것임.

_			
		기회(Opportunity)	위협(Threat)
	가저	충전시장의 활성화 및 충전 인프라	신재생에너지 발생 전력의 충전용
	강점 (Ctura et la)	구축 지원	전력으로 직접 판매
	(Strength)	BTM 시장 구축	충전용 전력의 상계거래 허용
	약점	REC 등 보조금 지급	V2G 실증 사업 및 제도 마련
	· — .	신재생에너지 전력 사용 충전	V20 글8 자급 및 제고 미단 안전점검 기준 강화
	(weakness)	시비자에게 케테 비어	한잔금급 시도 성적

소비자에게 혜택 부여

〈표 5〉 전기자동차 충전시스템에서 신재생에너지 도입의 SWOT 전략

2. 충전시스템에서 신재생에너지 활용 방안

- □ 충전 시장의 활성화 및 충전 인프라 구축 지원
 - 충전 인프라의 초기 높은 투자비용과 낮은 수익성으로 국내 전기자동차 충전 시장은 정부가 주도적인 역할을 수행하고 있음
 - 높은 초기 투자비용과 낮은 전기자동차 보급 등에 따른 충전 수요 부족으로 고위험이 존재하여 민간 부분의 활발한 활동은 아직 저조한 상황임.
 - 낮은 충전 요금으로 민간 충전 사업자들의 수익성은 개선되지 못하고 있으며, 다양한 서비스가 나오기 힘든 상황이 계속 진행됨.

- 충전 시장의 수익성 확보 및 충전인프라 구축에 대한 정부의 지원이 필요함.
 - 충전시장에서 수익성을 확보하고, 다양한 서비스를 제공하는 등 충전 시장과 민간 자본 참여 활성화를 위해서는 충전 요금의 정상화가 필요함.
 - 하지만, 충전요금의 정상화는 전기자동차 보급에 음의 영향을 미치는 등 여러 가지 문제를 불러올 것으로 판단됨.
 - 정부는 공공급속 충전시설의 유료화 정책을 시행하면서 유료화에 따른 수익은 충전시설 인프라 구축 및 확대 사업에 사용할 것이라고 하였으며, 한전은 충전 전력을 공급하면서 기본요금을 징수할 예정임.
 - 이러한 재원을 활용하여 전기자동차 충전 네트워크를 구축하고 확대 할 필요가 있음.
- 정부가 운영하는 충전기를 장기적으로 민간 사업자에게 임대하는 것도 고려할 수 있음.
 - 현재 정부에 의해 충전기가 설치·운영되고 있는 실정임.
 - 정부는 충전기 임대를 통해 충전기 인프라 구축에 들어간 세금을 회수할 수 있을 것이고, 민간 사업자는 충전 인프라 구축에 필요한 투자비용을 줄일 수 있음.

□ 신재생에너지와 충전 사업자의 결합과 상계거래

- 충전시스템에 신재생에너지를 도입하기 위해서는, 신재생에너지 발전 사업과 충전 사업의 통합이 필요함
 - 신재생에너지를 활용한 전기자동차 충전 사업인 EV 카페는 신재생에너지 발전 사업자가 한전과 전력 판매 거래를 하고, 충전 사업자 역시 한전과 전력 구매 거래를 하는 구조로 이루짐.
 - 이러한 구조 아래에서는 신재생에너지 발전 사업자가 충전 시장에 진출할 유인을 얻지 못하며, 충전 사업자 역시 충전용 전력을 신재생에너지로부터 공급받을 유인을 갖지 못함.

- 소규모 신재생에너지 발전사업자가 충전용 전력을 직접 판매할 수 있다면 충전시스템에서 신재생에너지 활용 논의는 달라질 수음
 - 만약 신재생에너지 발전사업자의 수익구조가 SMP+REC와 충전요금 (+REC)으로 확대될 수 있고, 충전요금(+REC)이 SMP+REC보다 높다면, 신재생에너지 발전사업자는 충전사업에 진출할 유인을 갖게 됨.
 - 충전 시장은 소규모 신재생에너지 발전사업자에게 새로운 사업 기회를 제공할 것이며, 이는 신재생에너지 보급에 긍정적인 역할을 할 수 있음.
- 상계거래로 전력거래에 대한 문제를 해결함
 - 신재생에너지 발전 전력을 충전용으로 사용할 시 전력 거래에 문제가 발생할 수 있음.
 - 신재생에너지 발전사업자는 전기자동차 충전 소비자의 행태를 조절할 수 없기 때문에 충전용 전력량과 그리드를 통한 한전에 판매할 전력량을 결정할 수 없게 됨.
 - 이를 해결하기 위해, 소규모 신재생에너지 사업자는 자신이 생산한 전력을 모두 그리드를 통해서 공급하고 자신들이 설치한 충전기에 공급되는 전력은 그리드를 통해서 공급함.
 - 상계거래를 통해서 사후에 태양광 발전시간에 충전기에서 사용된 전력량을 계산하면, 계산된 전력량이 신재생에너지 발전사업자가 판매한 충전용 전력량이 될 것임.

□ 신재생에너지, ESS, 전기자동차 충전 관련 실증 사업 추진

○ 여러 실증 사업을 통하여 ESS, 신재생에너지, 충전 시스템 연계 시 발생하는 문제점을 분석하고, 새로운 운영시스템을 시범적으로 적용하는 사례를 늘려 나가야 할 것임.

- 제주도는 EV카페 사업을 통해 전력생산·저장·판매, 전기자동차 충전, 휴식공간 제공 등 다양한 서비스를 제공하는 에코플랫폼 비즈니스 모델을 실증할 계획임.11)
- 비록 현 상황에서 제주도의 EV카페 실증 사업이 경제성이 없고 사업 모델도 부족하다 할지라도, 이러한 실증 사업은 신재생에너지와 ESS의 전기자동차 충전시스템 도입 시 발생하는 여러 문제점들을 분석하고 해결 방안을 마련하는 기회를 제공할 것임.

□ 충전용 신재생에너지 전력의 REC 발급 허용

- 전기차 충전용 신재생에너지 전력이 REC를 받을 수 있다면, 신재생에너지 발전사업자는 전력을 충전용으로 팔 수 있는 유인이 발생함.
 - 경제성 분석에서 살펴보았듯이, 신재생에너지 사업자에게 생산된 전력을 충전용으로 직접 판매를 허가하더라도 신재생에너지 발전 사업자는 신재생에너지로 발전된 전력을 충전용으로 사용할 유인을 얻지 못함.
 - 그 이유는 신재생에너지 발전사업으로 SMP+REC를 받고 별개로 충전 사업을 하면 더 높은 이윤을 얻을 수 있기 때문임.
 - 신재생에너지 전력이 전기차 충전용으로 사용될 시 REC를 지급한다면, 충전시스템에서 신재생에너지 사용은 경제성 있는 사업 모델이 될 수 있음.

□ 신재생에너지로 생산된 전력의 충전 이용자 혜택 부여

- 전기자동차 충전 시 신재생에너지를 사용하는 소비자에게 인센티브를 제공하는 것도 중요함.
 - 전기차 사용자에게 충전 시 신재생에너지 사용에 대한 인센티브를 제공한다면, 전기차 사용자는 신재생에너지를 소비하려는 유인을 받게 됨.

¹¹⁾ 제주특별자치도 보도자료(2018.7.26.), '신재생에너지 융합 충전스테이션(EV Cafe) 준공, 전기차 연관 산업 가속'

- 전기차 사용자의 신재생에너지 선호는 충전 시장에 신재생에너지 전력 공급을 증가시킬 수 있는 요인으로 작용할 수 있을 것임.
- 첫 번째, 전기자동차 사용자가 전기자동차 충전 시 신재생에너지 사용으로 수송 부문의 온실가스를 감축시켰다면, 온실가스 감축에 따 른 사회적 편익에 상응하는 경제적 혜택을 전기자동차 사용자에게 부여할 수 있음.
- 두 번째, 소비자에게 부여될 수 있는 인센티브로는 그린카드와 에코머니 제도의 활용을 고려해 볼 수 있음.

□ 신재생에너지 충전 시스템 도입 시 기술적 문제 해결

- 신재생에너지를 충전 시스템에 도입 시. 안정성 문제가 야기될 수 있음.
 - 태양광과 ESS 관련 화재 사고는 사업자와 소비자에게 관련 기기 설치의 신뢰도를 떨어트림.
 - 전기와 ESS 관련 자문회의에서 태양광, ESS, 충전, 전기 관련 실무자들은 각각의 안전 기준은 있지만, 이를 연계할 경우에 대한 안전 기준은 따로 마련되어 있지 않다고 밝힘.
 - 신재생에너지를 충전시스템에 도입하기 위해서는 신재생에너지, ESS, 충전기 연계 시 발생할 수 있는 기술적 문제에 대한 연구가 선행되어야 함.
- 신재생에너지로부터 생산된 전력을 직접 충전용으로 사용할 수 있다면, 계량에 대한 문제가 발생할 수 있음.
 - 현재 신재생에너지 발생 전력의 계량은 전력거래소 또는 한전에 의해 공인된 계량기에 의해 측정됨.
 - 하지만 소규모 신재생에너지 발전 사업자의 경우 자신이 생산한 전력을 직접 충전용 전력으로 사용했을 시 얼마의 전력을 사용 하였는지에 대한 공인된 측정을 받기 어렵울 수 있음.
 - 충전용 신재생에너지 전력에 REC를 부여하게 될 경우 '공인된' 계측에 대한 논의가 필요할 것으로 보임.

Ⅳ 기대 효과

- □ 본 연구의 목적은 전기자동차 충전시스템에서 신재생에너지 활용을 위한 여러 정책적 제언을 제안하는 것임.
 - 본 연구는 국내외 현안을 통해 우리는 SWOT 요소들을 도출하고, 이를 바탕으로 SWOT 전략을 도출함.
 - SWOT 전략들을 통해 6가지 전기자동차 충전시스템에서 신재생에너지 활용 방안을 제시함.
 - 충전시장의 경제성 확보 및 활성화
 - 신재생에너지와 충전 사업자 결합과 상계거래 활용
 - 신재생에너지, ESS, 전기자동차 연계 실증 사업 추진
 - 충전용 신재생에너지 전력의 REC 발급 허용
 - 신재생에너지 연계 충전시스템 이용자의 혜택 부여
 - 기술적 문제 해결이다.
 - 본 연구의 정책 제안은 구체적이며, 수송 부문 신재생에너지 활용을 위한 정책 개발에 기초 자료로 활용할 수 있을 것으로 기대됨.
- □ 스마트에너지 시스템 구축을 위한 기초 자료로 활용
 - 제3차 에너지기본계획에서 스마트에너지 시스템은 중요한 미래 에너지 전략으로 부상함.
 - 스마트에너지 시스템에서 수송 부문에서의 전기자동차와 신재생에너지 연계성 확대는 주요 논의 사항임.
 - 전기자동차 보급 확대에 따른 온실가스 저감을 위해 수송 부문 신재생에너지 전력 보급은 중요해짐.
 - 본 연구의 결과는 전기자동차 보급과 신재생에너지 전력 공급을 연계시킬 수 있는 정책 대안을 제시하여, 수송 부문 온실가스 저감에 기여를 할수 있을 것으로 기대됨.

〈 참고자료 〉

1. 참고문헌

- 박규호 외 3명, 2017, 「전기자동차 충전행태분석」, 대한교통학회
- 이철용, 2017, 「태양광 원가분석을 통한 균등화 비용 국제 비교 분석」, 에너지경제 연구워, 기본연구보고서
- 온실가스종합정보센터, 2017, 「2017 국가 온실가스 인벤토리 보고서」
- BNEF, 2017.12.5. 2017 Lithium-Ion Battery Price Survey
- McLaren, Joyce, John Miller, Eric O'Shaughnessy, Eric Wood, and Evan Shapiro, 2016, 'Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type,' NREL
- Miotti, Marco, Geoffrey J. Supran, Ella J. Kim, and Jessika E. Trancik, 2016, 'Personal Vehicles Evaluated against Climate Change Mitigation Targets,' Environmental Science and Technology, 50, p.10795-10804.
- Pedro Nunes at. al.(2016) The use of parking lots to solar-charge electric vehicles, p.679-693

2. 보도자료

- 산업통상자원부 보도자료(2016.11.28.), '에너지저장장치(ESS) 활용촉진을 위한 공장·상업시설 요금할인 대폭 확대'
- 제주특별자치도 보도자료(2018.7.26.), '신재생에너지 융합 충전스테이션(EV Cafe) 준공, 전기차 연관 산업 가속'
- 한국전력 보도자료(2017.4.27.), '신재생에너지 및 에너지저장장치 전기요금 할인제도 변경사항 안내'
- 환경부 보도자료(2015.6.24.), '연료부터 운행까지 온실가스 전과정 측정 결과, 친환경차 배출량 내연차 절반 수준,'

3. 인터넷 사이트

Financial Times, Jessika Trancik, Geoffrey Supran and Marco Miotti, 'Reality is that most EVs emit less CO₂ than petrol cars over their lifetimes 최종접속일: 2018.10.30.,

https://www.ft.com/content/

d14b6c8a-c61e-11e7-b2bb-322b2cb39656

Global Auto News, 유일한, '환경을 덜 오염시키는 자동차를 위해,' 최종접속일: 2018.10.30.,

https://auto.v.daum.net/v/gB3i545GFi

4. DATA

IEA, CO₂ Emissions from Fuel Combustion 2010, 2017

정책 이슈페이퍼 19-12

전기자동차 충전시스템에서의 신재생에너지 활용 방안 연구

2019년 5월 30일 인쇄

2019년 5월 31일 발행

저 자 이 승 문·김 기 환·이 성 재

발행인 조용성

발행처 에너지경제연구원

44543 울산광역시 종가로 405-11

전화: (052)714-2114(代) 팩시밀리: (052)-714-2028

등 록 1992년 12월 7일 제7호

인 쇄 디자인 범신 (042)226-8737

KEEI ISSUE PAPER

