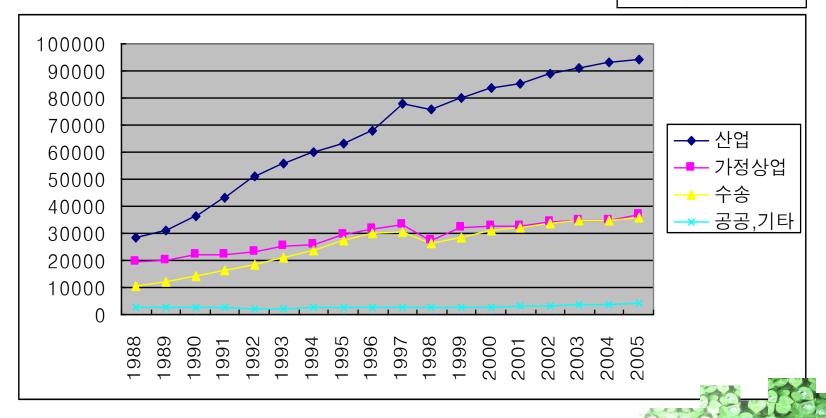

국내 건축물 에너지 사용 현황 및 그린빌딩 인증제도

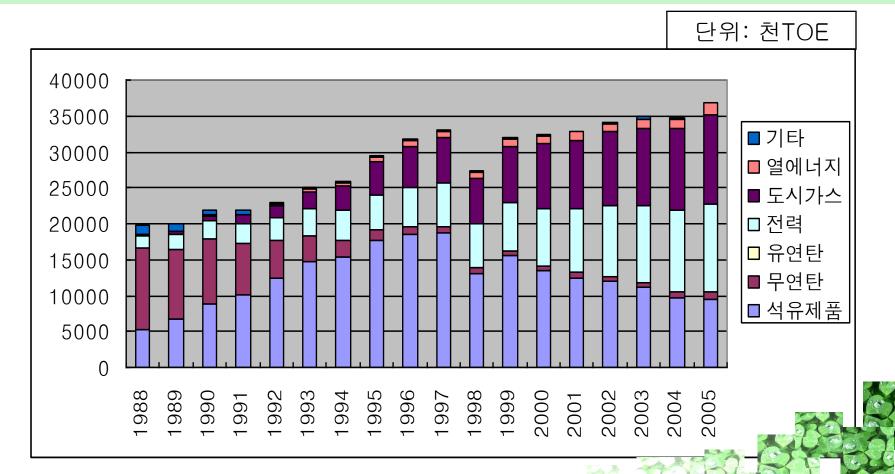
동의대학교 건축설비공학과

김 삼 열

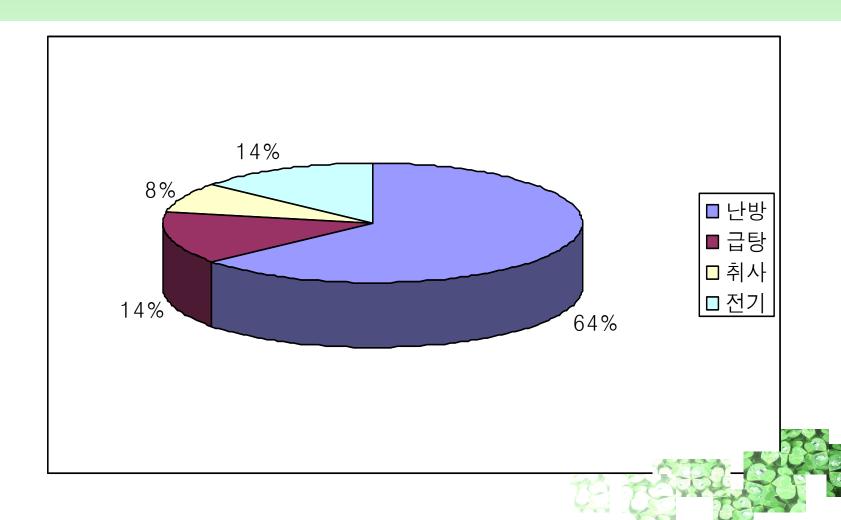
국내 최종 에너지 소비 경향



분야별 에너지 사용 비율


산업부분	55%	
수송부분	21%	
건물부분 (주거)	18%	
건물부분 (상업, 공공)	6%	24%

분야별 연간 에너지사용추이


단위: 천TOE

가정 상업 분야의 부문별 최종에너지 소비 경향

주거용 건물의 에너지 사용

그린빌딩(green Building)의 개념

 에너지절약과 환경보전을 목표로 에너지 사용량 감소, 자원재활용과 환경공해 감소 기술 등을 건축에 도입하여 자연친화적으로 건축하고 건물의 수명이 다하여 철거될 때까지 환경오염이 최소화 되도록 유지 관리되는 건축물

그린빌딩의 원칙

- 건물의 라이프사이클(생애주기)을 통한 천연자원의 소비(재료와 에너지)의 최소화
- 건물의 라이프사이클을 통한
 오염물질과 환경물질의 배출을 최소화
- 생태(자연) 환경보호
- 건강하고 편리한 안전공간 확보

그린빌딩의 기대이익

- 라이프사이클 경비감소
- 초기투자비/유지비 (에너지, 유지, 보수)
- 위험과 의무의 감소 (불필요 경비)
- 보다 나은 건물을 제공
- 입주자의 생산성 향상

그린빌딩 인증제도

- 제도의 목적
 - 건축물의 자재생산, 설계, 건설, 유지관리, 폐 기 등 전 과정을 대상
 - 에너지 및 자원의 절약, 오염물질의 배출감소, 쾌적성, 주변 환경과의 조화 등 환경에 영향 을 미치는 요소에 대한 평가
 - 건축물의 환경성능을 인증함으로써 친환경건 축물 건설 유도·촉진

그린빌딩 인증의 필요성

- 건축물의 건설, 사용 및 폐기과정에서 에너지와 자원의 소비, 오염물질과 폐기물의 발생 등으로 환경영향 큼
 - 건축물의 경우 철강 등 기초소재, 수도, 단열재 등 건축기자재, 전 기 및 기계설비, 조경 등 연관 산업에 대한 파급효과가 큰 분야임
 - 건축물은 에너지소비의 3분의 1, 자원소비의 40%, CO₂ 배출의 50%, 폐기물배출의 20~50%를 차지
- 신도시 개발 등으로 인한 건축물의 신축과 재건축이 활발 한 우리나라 현실에서 건축물의 건설과 관련하여 친환경적 요소에 대한 사전 고려가 필요함
- 기후변화문제와 관련하여 건물의 에너지 사용과 CO₂ 배출 저감 등 환경 친화성 증진방안에 대한 국제적 논의가 활발 하게 진행 중임

기대효과

- 건물의 자재생산, 설계, 시공, 유지관리, 폐기 등 전 과정에 LCA(Life Cycle Assessment) 평가기법 도입으로 주변 환경에 미치는 영향을 최소화하고 쾌적한 주거환경을 제공함
- 환경친화적인 건축물 건설 유도 및 건축물 전 과정의 환경영향을 최소화하기 위한 기 술개발 촉진

각 국의 그린빌딩 인증제도

- 영국: BREEAM (Building Research Establishment Environmental Assessment Method)
- 미국: LEED (Leadership in Energy and Environmental Design)
- 일본: CASBEE (Comprehensive Assessment System for Building Environmental Efficiency)
- 한국: 친환경 건축물 인증제도 (GBCS: Green Building Certification System)

BREAM (Building Research Establishment Environmental Assessment Method)

- BRE(영국의 건축관련 연구소)와 민간기 업이 공동으로 개발한 평가방법
- 신축 혹은 기존 건물의 환경성능을 평가
- 건물 환경에 관한 질을 측정, 가시적으로 표현
- 건축주나 설계업자, 건설업자, 거주자, 유 지관리업자를 대상으로 시장성과 평가도 구로 활용

BREAM (Building Research Establishment Environmental Assessment Method)

- 1980년대 말부터 1990년대 초에 걸쳐서 건물의 유형별로 환경과 관련된 연구들이 나왔으며 모두 5부분으로 나누어져 있다.
 - Version 1: New office design
 - Version 2: New superstores and supermarkets
 - Version 3: New homes
 - Version 4: Existing office buildings
 - Version 5: New industrial, warehousing and non-food retail outlets

현재의 BREEAM

- BREEAM Offices (사무소): office buildings
- BREEAM Ecohomes (주택): housing
- BREEAM Courts (법정): courts
- BREEAM Industrial (산업용): light industrial units, warehouses and workshops
- BREEAM Prisons (감옥): prison accommodation
- BREEAM Retail (판매시설): retail outlets and shopping malls
- BREEAM Schools (학교): schools
- BREEAM Ecohomes XB (기존 주택): existing housing portfolios
- BREEAM Multi-residential (공동주택/기숙사): sheltered homes, nursing homes and student accommodation

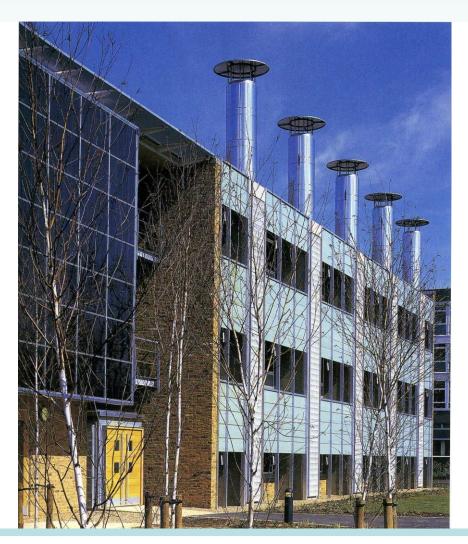
BREEAM 2006 Office 평가기준

평가항목	점수
Management (관리)	15
Health & Well-being (건강 및 웰빙)	15
Energy (에너지)	13.63
Transport (교통)	11.37
Water Consumption (물 소비)	5
Materials (재료)	10
Land Use (토지 이용)	15
Pollution (오염)	15
Total	100

평가등급

Rating (등급)	Minimum Score Required
PASS	25
GOOD	40
VERY GOOD	55
EXCELLENT	70

The Environmental Building


BRE (Building Research Establishment) 건물 (영국)

건물의 개요

The Environmental Building

· 건물명칭 : BRE Office of the

Future

• 건축주:BRE (Building

Research Establishment)

소재지: Garston,

Hertfordshire, UK

건축가: Feilden Clegg

Architects

• 준 공 일 : 1996년 12월

• 연면적: 2,000 m²

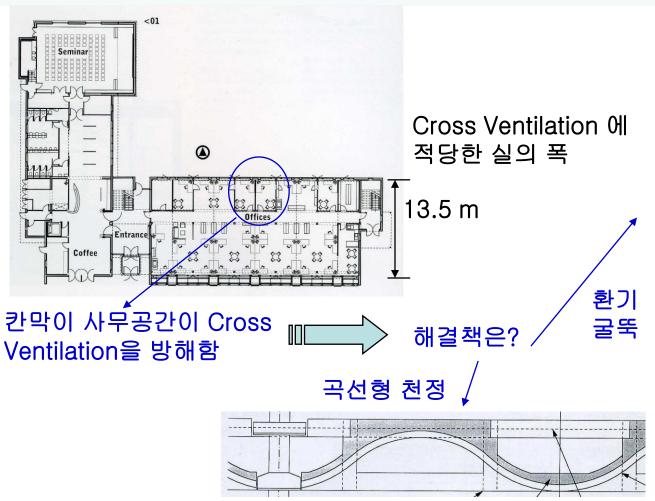
• 건축비:£3 million

기후지역: 온난지역

주된 건물 에너지 요소 Environmental Building

- 환기
- 자연채광 및 조명
- 태양전지

환기 (Ventilation)



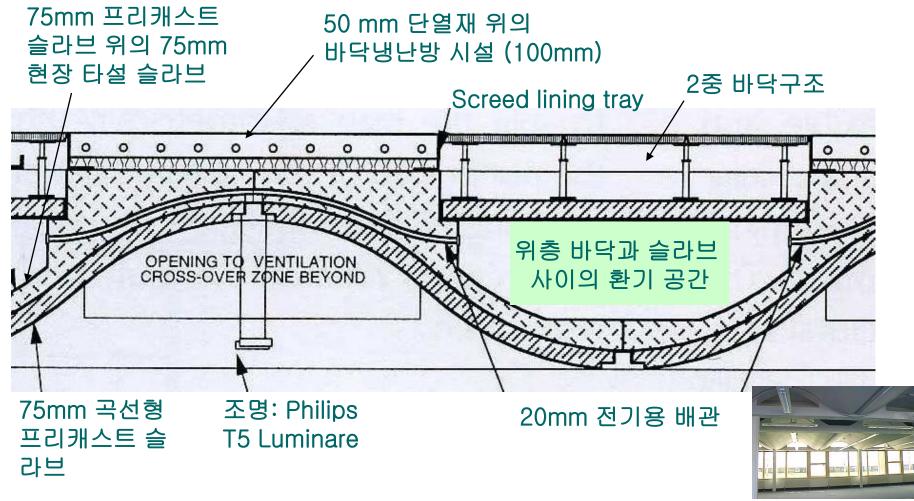
- 효율적인 바람이동을 위한 곡선 형 천장/바닥 시스템
- 건물 전면의 5개의 환기 샤프트
- 연돌 효과를 이용한 자연환기 시 스템
- Cross Ventilation

환기 (Ventilation)

The Environmental Building

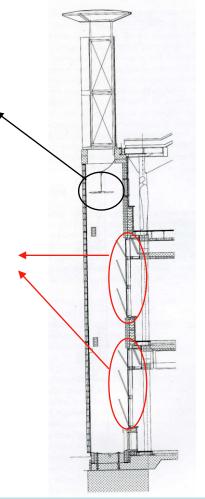
곡선형 천장 구조

The Environmental Building



곡선형 천장

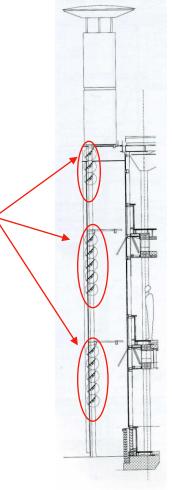
Ventilation Stack


The Environmental Building

굴뚝 내부에 프로펠러 팬이 설치되어 공기흐름 도와줌 (80W)

환기 굴뚝은 1,2층에 연결되어 있음 (각 층의 윗부분에서 환기굴뚝과 연결되어 더운 공기 배출)

자연채광 및 조명


The Environmental Building

자연채광을 위해 큰 창호 계획

전동제어가 가능한 반투 명 루버

Solar Control, Lighting

The Environmental Building

빛 조절용 차양장치 자동제어로 컨트롤

전동 차양장치를 이용하여 빛을 천장으로 반사시킴 눈부심을 방지하고, 실 깊숙이 빛이 들어올 수 있음 사인곡선형 천장은 빛을 효과적으로 확산시킴

Photovoltaics

The Environmental Building

남측 전면의 태양전지

전체 건물 에너지의 5% 담당하고 있음

Main Green Feature

- 웨이브 형태의 2중 환기 바닥
- 유리 블록을 사용한 전면 환기 굴뚝
- 태양열의 과다취득을 막는 향 및 평면계획
- 주광의 투과를 최대화시키는 넓은 창
- 외부 자동 루버를 포함하는 열 수 있는 창
- 외부 차양장치와 유지보수 데크의 결합
- 센서에 연결된 조명장치
- 재활용된 건축재료의 사용
- 태양광 발전 시스템

LEED (Leadership in Energy and Environmental Design)

그린빌딩 인증제도 (미국)

- 신축 혹은 기존의 상업용, 공공시설용, 고층 주거용 빌딩 등의 등급을 매기기 위해 고안된 자체 평가 시스템
- 건물의 생애주기(life cycle)에 걸쳐 환경성능 평가
- 자체 등급체계와 평가기준에 따라 그린빌딩을 평가하여
 - 획득점수에 따라 그린빌딩 등급 구분
- 관련업체는 그 업체의 이익창출과 수요개발을 위한 홍보에 이용하고 각종 금융. 세제상의 혜택

건축물 용도에 따른 분류

- New Commercial Construction and Major Renovation Projects (LEED-NC) (신축건물)
- Existing Building Operations & Maintenance (LEED-EB) (기존건물)
- <u>Commercial Interiors Projects (LEED-CI) (인테리어)</u>
- Core and Shell Development Projects (LEED-CS) (코어)
- Homes (LEED-H) (주택)
- <u>N</u>eighborhood <u>D</u>evelopment (LEED-ND) (단지 및 근린시설)
- LEED for Schools (학교)

LEED 인증을 위한 필수선행조건

항 목	내 용
1) 석면 사용금지	석면 사용금지, 단 기존건물로서 이미 석면이 사용된 건물이면 관련기준에 맞는 석면처리계획 제시
2) 빌딩 커미셔닝	반드시 빌딩 커미셔닝 계획에 의해 건축행위 추진
3) 에너지효율	관련기준에 따른 에너지 효율성 확보
4) IAQ	관련기준에 따른 IAQ 확보
5) 오존층 파괴물질 사용 금지	오존층 파괴 물질/CFCs 사용금지 단, 기존건물이면 5년 이내 이러한 물질처리 계획제시
6) 금연	금연 건물일 것
7) 폐기물 재활용시설	관련기준에 따른 폐기물 재활용 시설 확보
8) 열적 쾌적기준	관련기준에 따른 열적 쾌적기준 만족
9) 수자원 보존시설	관련기준에 따른 수자원 보존시설 확보
10) 수질확보	관련기준에 따른 수질확보

LEED 평가기준

항 목	평가내용
지속가능한 대지	필수 전제 : ① 침식 및 퇴적 관리
계획 (14)	• 부지선정(1) • 도시 재개발(1) • 황무지 재개발(1) • 대체 교통(4) • 부지 장애저감(2) • 호우 관리(2) • 열섬 방지대책(2) • 빛으로 인한 오염의 저감(1)
수자원의 효율성 (5)	•물의 효율적 사용에 의한 조경(2) •혁신적인 폐수처리 기술(1) •물 사용 저감(2)
에너지 및 대기	필수 전제 : ② 빌딩 커미셔닝 시행, ③ 최저 에너지성능기준 만족, ④ 공조기기의 CFC 사용 감소
(17)	• 에너지 성능의 최적화(10) • 재생에너지(3) • 추가적 빌딩 커미셔닝(1) • HCFCs, and Halons 불사용(1) • 측정 및 검증(1) • 친환경적 발전(1)
	필수 전제 : ⑤ 재활용 가능 폐기물 저장 및 수거
재료 및 자원(13)	• 건물 재사용(3) • 건축폐기물관리(2) • 자원 재사용(2) • 재활용 자재 사용(2) • 지역 생산 재료(2) • 급속 재생가능 재료(1) • 공인된 목재(1)
	필수 전제 : ⑥ IAQ 최저기준 만족, ⑦ 담배연기의 환경적 제어
샐내환경의 질(15)	• CO ₂ 감시시스템(1) • 환기효과 증대(1) • 시공중 IAQ관리 계획(2) • 저 VOCs 발산 재료 사용(4) • 실내 화학재 및 오염원의 제어(1) • 시스템의 제어가능 여부(2) • 열적 쾌적성능(2) • 자연광 이용과 조망(2)
혁신 및 설계과정 (+5)	혁신적인 기술(+4)/LEED™ 인증 설계자 참여(+1)

LEED-NC Version 2.2 (신축건축물 평가 최근 버전)

- Sustainable sites (대지)
 Water Efficiency (수자원)
 Energy and Atmosphere (에너지와 대기)
 Materials and Resources (재료와 자원)
 Indoor Environmental Quality (실내환경)
 Innovation and design Process (혁신적 디자인)
- (Total 69 Point)
- 등급

Platinum (52–69) Gold (39–51) Silver (33–38) Certified (26–32) No Rating (– 25)

HGEC (Hawaii Gateway Energy Center) (미국의 건물사례)

Hawaii Gateway Energy Center

건물개요

• 위 치 : Kailua-Kona, Hawaii

 건물용도: Commercial office, Laboratory, Interpretive Center, Assembly

건물규모: 1층 2개동 (2,400 sq ft (223 ㎡), 1,200 sq ft (111 ㎡))

• 건축가: Feilden Clegg

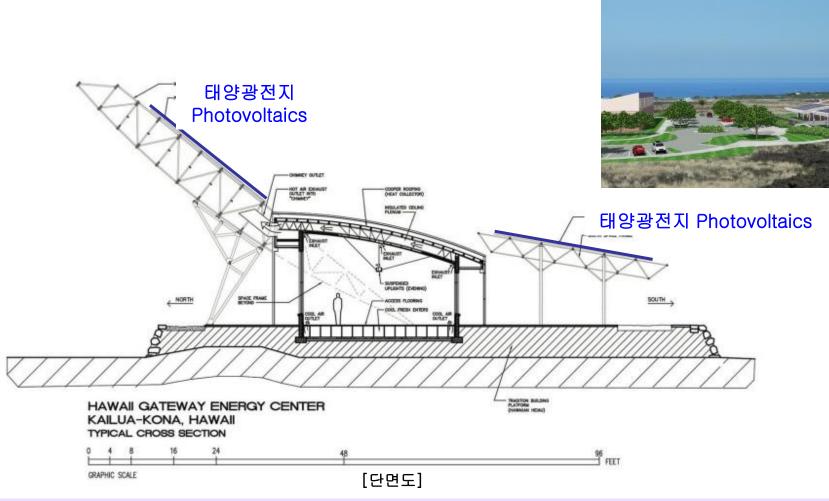
Architects

• 준공일: 2005년 1월

• 인증등급: LEED-NC v.2/v.2.1

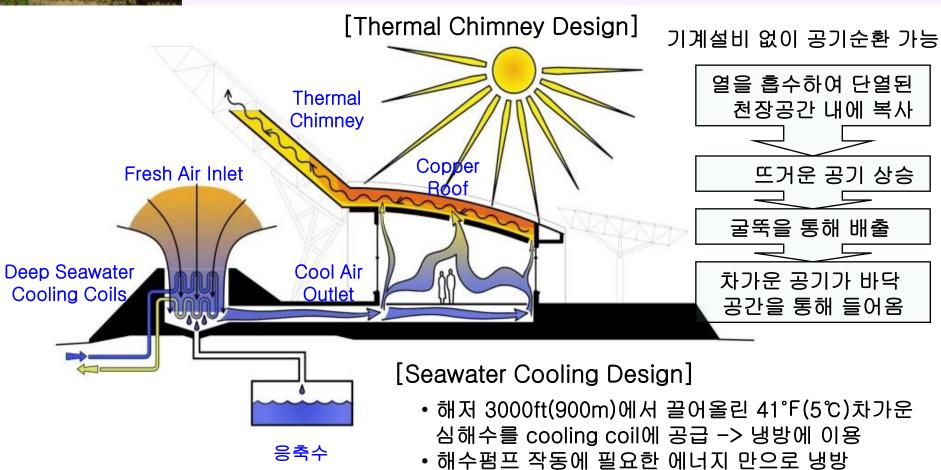
Platinum (52 points)

Hawaii Gateway Energy Center


Environmental Aspects

- Zero-net-energy facility: 태양전지로부터 건물에서 소비하는 에너지 이상의 에너지 생산
- 건물의 향과 디자인은 주간에 전적으로 인공조명의 사용을 불필요하 게 함
- 모든 창문의 차양은 직달일사에 의한 열획득 차단
- 공조설비 및 환기설비 불필요 thermal chimney에 의한 자연환기 이용
- 냉방을 위해 차가운 심해수 이용
- 조경용수 및 화장실 용수로 냉방코일의 응축수 이용 절수형 위생 기구 사용
- 무독성의 페인트와 실란트 뿐만 아니라 지역에서 생산된 건설재료의 사용

Hawaii Gateway Energy Center


태양광 전지 (PV)

Hawaii Gateway Energy Center

건물냉방 개념도

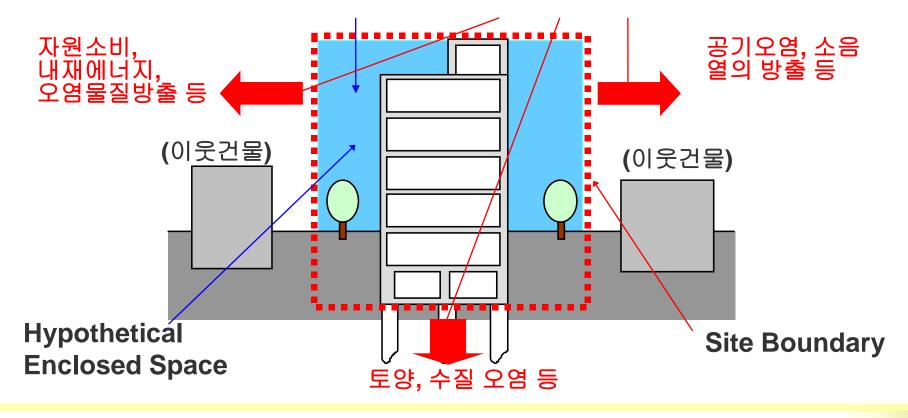
Hawaii Gateway Energy Center

실내환경

- Excellent Daylighting: 주광만으로 주간 조명
- 조망:
 - 남북면 전체를 유리창으로 계획
 - 각 실에 풍부한 조망 제공
 - 직달일사를 차단하도록 계획
- 환기
 - 굴뚝효과를 위해 고정창 설치
 - Stack ventilation에 기초한 환기설계 (소음, 바람, 먼지를 유발하는 Cross Ventilation은 바람직하지 않음)
 - 100% 외기 이용하며 환기율 8~15 (ACH)
 - 외기습도 85% -> deep seawater cooling coils에서 응축 -> 실내 습도 70~75%
- 열쾌적
 - 실내외의 기온상승은 thermal chimney 효과를 일으켜 찬 공기를 실내로 유입
 - 기계설비없이 건물 내부는 72~76°F(22 ~24 ℃) 유지
- ▶ 실내 공기질 유지 : low-VOCs 자재 사용

CASBEE (Comprehensive Assessment System for Building Environmental Efficiency) (일본)

CASBEE is a comprehensive, but clear, simple & affordable system to assess the building sustainability through both


- 1. "Q" :Building Environmental Quality & Performance (건물환경의 질과 성능) and
- 2. "L": Building Environmental Loadings, (건물의 환경부하)

according to

the "Hypothetical Boundary" of the project.

'Hypothetical Boundary' 란?

Assessment category "Q" 영역 안에서의 좋은 영향 Assessment category "L" 영역 밖으로의 나쁜 영향

CASBEE 의 건물성능 표현방법

Assessment result is finally indicated in terms of

BEE = Q / L

BEE: Building Environmental Efficiency

(건물의 환경효율)

Q: Building Environmental Quality & Performance

(건물환경의 질과 성능)

L: Building Environmental Loadings

(건물의 환경부하)

CASBEE 의 평가영역

Primary Areas

- 1. 에너지 효율성
- 2. 자원의 효율성
- 3. 지역 환경
- 4. 실내 환경

(총 80개의 세부항목)

Re-categorized into

Q (Quality) and

L (Loadings) to indicate

Numerator Areas

Q1: 실내 환경

Q2: 서비스의 질

Q3: 부지 내에서의 실외환경

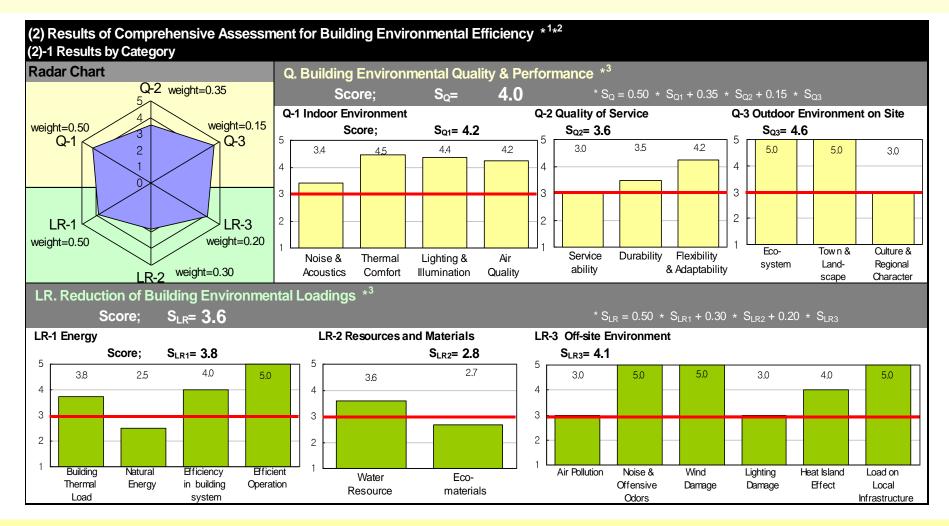
L1: 에너지

L2: 자원과 재료

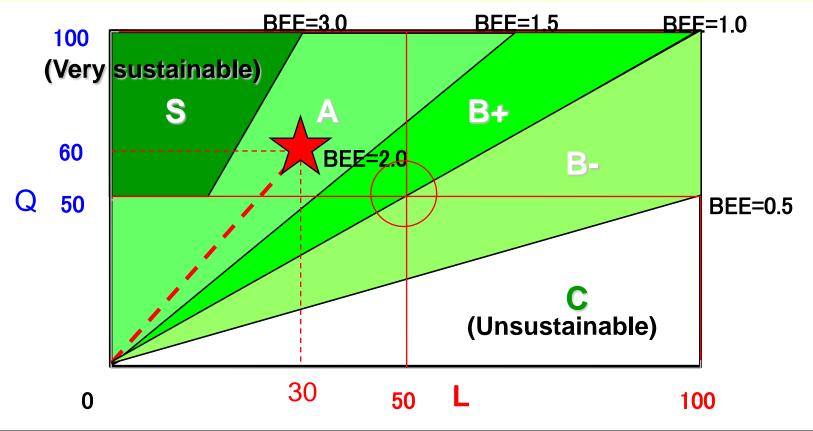
L3: 부지 밖의 환경

Denominator Areas

Hypothetical Enclosed Space for **CASBEE**



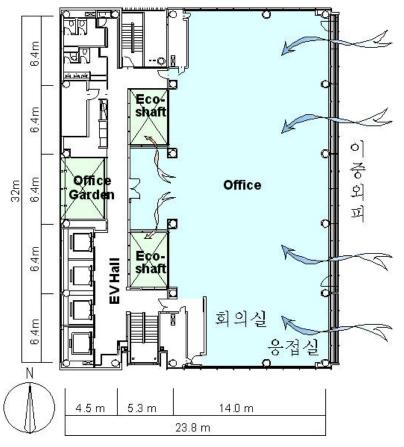
Assessment Areas of Q & L



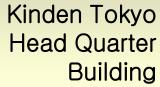
BEEEvaluation

평과 결과 SHEET "Q(SQ)" & "LR(SLR)" Display

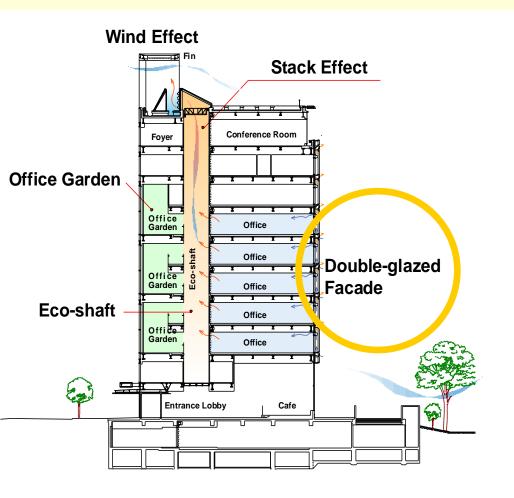
"BEE Graphical Display" (평가결과의 표현)

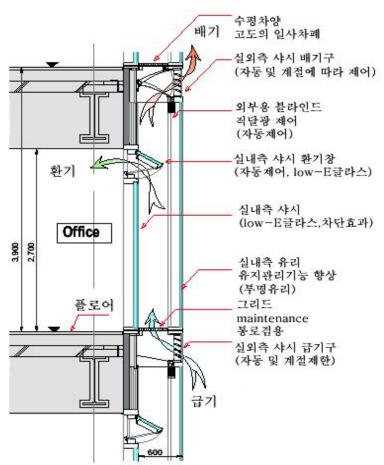


 $Q = 25 \times (SQ - 1), \qquad L = 25 \times (5 - SLR)$

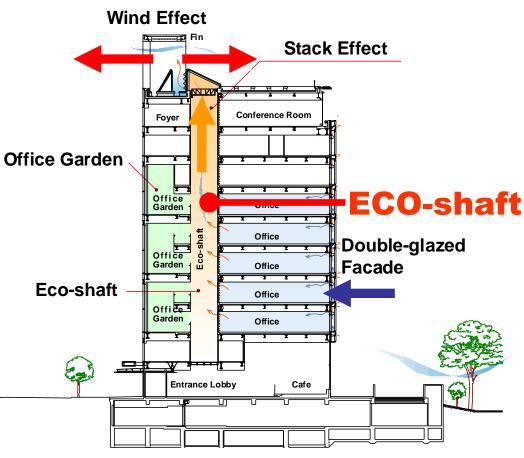

So: Total score of Q categories, SLR: Total score of L categories

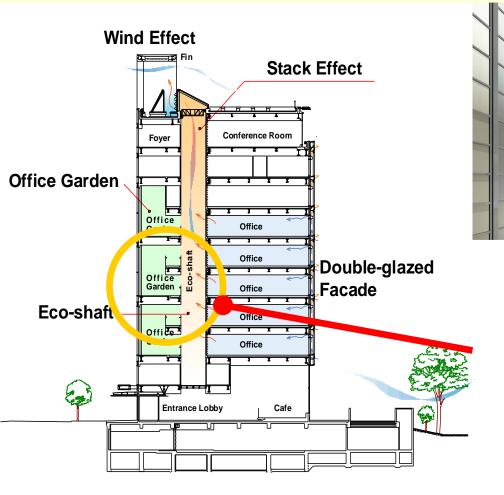
Kinden Tokyo Head Quarter Building, Tokyo (일본의 건물사례)

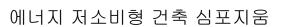




이중외피 구조


이중외피 구조


굴뚝효과 (ECO-shaft)



내부정원 (Office Garden)

태양광 발전시스템 (지붕)

한국의 친환경 건물 평가제도

명칭	그린빌딩 시범인증	주거환경우수주택 시범인증
인증기관	㈜ 능률협회 인증원	대한주택공사
시행기관	환경부	건설교통부
시행기간	1999.10 – 2000.10	2000.04 – 2000.12
대상	17개 공동주택	8개 공동주택
평가항목	자원소비	토지이용 및 교통
	환경부하	에너지 및 자원
	실내환경	생태환경
	장기내구성	실내환경
	전과정연계관리	추가항목
	단지 및 근린환경적합성	

통합 인증제도

- 명칭: 주거용 건축물 인증제도
- 통합기준:
 - 1 전체 틀은 GBTool을 따름
 - 2 주공과 인증원이 공통 제시한 것 우선 채택
 - 3 합리성이나 근거가 결여된 것 배제
 - 4 제시되지 않은 기술 중 추가항목 선정 검토

친환경건축물 인증제도의 종류

- 공동주택 (2002. 1 제정, 2006. 3 개정)
- 주상복합 (2003. 1)
- 업무용 (사무소) (2003. 1)
- 학교 (2003. 1)
- 판매시설(상점)(2006.9)
- 숙박시설 (호텔) (2006. 9)

친환경건축물 인증심사기준(한국) - 사무소 Green Building Certification Criteria

부문	평가 점수	가산 점수	총점	범 주
토지이용	5	2	7	생태적 가치, 토지이용, 인접대지영향
교통	3	2	5	교통부하 저감
에너지	23	0	23	에너지 소비, 에너지 절약
재료 및 자원	12	9	21	자원 절약, 자원 재활용
수자원	10	4	14	수순환 체계 구축, 수자원 절약
대기오염	6	0	6	지구온난화 방지
유지관리	4	6	10	체계적인 현장관리, 효율적인 운영관리, 시 스템 변경의 용이성
생태환경	13	6	19	대지내 녹지공간조성, 생물서식공간 조성
실내환경	24	7	31	공기환경, 온열환경, 음환경, 쾌적한 실내환 경 조성, 노약자에 대한 배려
총점	100	36	136	* 최우수 : 85점 이상 우수 : 65점 이상

친환경건축물 인증현황

(2006년 말까지)

연도별 인증실적

구분	2002년	2003년	2004년	2005년	2006년	계
한국에너지기술연구원	0	1	2	11	12	26
크레비즈 큐엠	0	1	5	10	21	37
주택도시연구원	3	1	8	11	130	153
(사) 한국교육환경연구원	_	_	_	_	0	0
합계	3	3	15	32	163	216

건물유형별 인증실적

구분	공동주택	주거복합	업무용	학교	판매시설	숙박시설	계
한국에너지기술연구원	2	3	21	0	0	0	26
크레비즈 큐엠	27	1	2	7	0	0	37
주택도시연구원	143	3	7	_	0	0	153
(사) 한국교육환경연구원	_	_	_	0	_	_	0
합계	170	7	31	7	0	0	216

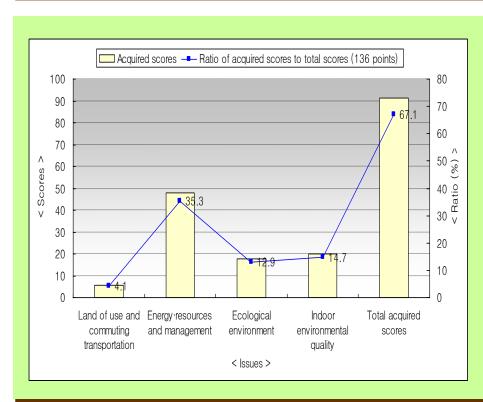
코오롱건설(주) 기술연구소

친환경 요소기술이 적용된 에너지 저소비형 연구소 (우리나라 사례)

조감도

☞ 배치도

☞ 건축개요


구 분	내 용
위 치	경기도 용인시 포곡면 전대리
공사기간	2004년 1월 ~ 2004년 10월
규 모	지하1층, 지상3층 (철근 Con'c+철골)
면 적	대지 565평, 건축면적 183평, 연면적 621평
특 징	에너지 저소비형 친환경 연구시설

친환경건축물 인증 결과

(KGBCC: Korea Green Building Certification Criteria)

국내 친환경건축물 인증에 의한 분석 및 평가결과 최고점인 91.2 점 획득

부문	최종 점수	총점에 대 한 비율(%)
토지이용 및 교통	5.6	4.1
에너지 및 자원	48	35.3
생태환경	17.6	12.9
실내환경	20	14.7
총합	91.2	67.1

그린빌딩 기술 적용

1) 신재생에너지 적용

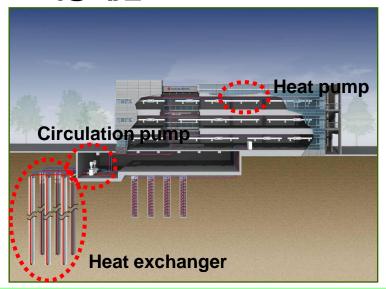
- 지열냉난방시스템
- 태양광시스템 (BIPV 형)

2) 에너지절약시스템

- 친환경외피시스템
- 채광시스템(솔라튜브)

3) 친환경 외부공간

- 옥상녹화
- 기능성콘크리트

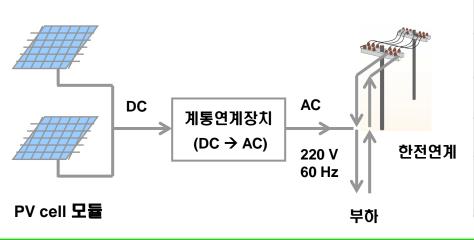

신재생에너지 적용 지열냉난방시스템

☞ 시스템 개요

- 연중 15℃로 일정한 지중열을 열원으로 지열교환기로 이용하여 히트펌프를 가동함으로써 실내 냉난방이 가능한 신재생 에너지 시스템
- 모든 냉난방시스템 중 에너지 효율이 높은 기술로 공인 [미국 에너지부] 받
 았으며, 각종 건물 에너지 절약에 크게 기여하는 기술임

☞ 적용 개념도

□ 시공과정


신재생에너지 적용 건물외장형 태양광시스템

☞ 시스템 개요

건물외장형 태양광시스템 [BIPV: Building Integrated Photovoltaic]은 태양전지 모듈을 건축물의 외피를 구성하는 요소로 사용하여 전력생산이라는 본래의 기능 이외에 건축물의 외피재료로 사용하며, 설치공간을 위한 별도의 건축면적 확보가 필요 없기 때문에 경제성 면에서 유리함

☞ 시스템 구성 및 사양

구 분	Specification	비고
시스템 용량	2.2kWp	형광등 120개
태양전지	Amorphous 모듈	건자재용 PV모듈
프레임	SPG 프레임	
소요면적	45m²	
연결방식	계통연계형	생산된 전기를 한 전계통과 연계

신재생에너지 적용 건물외장형 태양광시스템

☞ 시스템 특징

- 건축 설계요소로 BIVP기술을 사용[비결정형 박막 thin film] → 태양전지
 모듈 의 건축자재화: 커튼월, Roof, Façade 등 건축물의 외피마감재
- 유리창형 태양전지 [투과율 10%] → 건물의 에너지성능 향상소재: 자외선 및 일사 차단으로 건물의 냉난방부하 감소

☞ 시스템 적용 예

동의대학교 김삼열

생태연못 태양광 분수

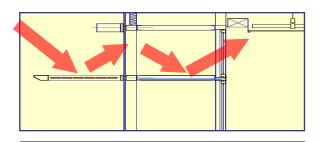
에너지절약시스템 적용 친환경외피시스템 (이중외피)

☞ 배경 및 효과

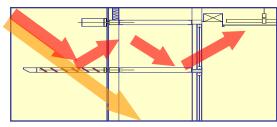
- 건물외피 중 창을 통한 열손실은 건물전체의 약 40%를 차지, 냉방부하를 감소시키기 위한 저 비용 시스템
- 외부형 Type (다중 중공층의 샤프트형 등) 보다 공사비가 저렴하며, 쾌적성이 높고 고절이 용이함
- 중공층의 열적 버퍼에 의한 냉난방 부하 저감 및 소음차단 효과가 우수
- 하단에 수납공간 설치로 실내공간 활용 극대화 가능

☞ 설치 예

친환경외피시스템 조절식 차양, 광선반



코오롱건설 기술연구소


☞ 배경 및 효과

- 직사광선 유입으로 인한 실내조도의 불균등 해소
- 자연채광을 유도하여 주간의 조명기구 사용 저감으로 에너지 절약
- 실내의 조도분포와 균등화 및 실내공간의 시각적 안 정성 제공
- 사용자 필요에 따라 핸들조작으로 입사량 조절 (개폐 식 외부 블레이드)

☞ 조절식 차양 및 광선반의 작동 예

외부 블레이드를 닫았을때 => 직사광 차단

외부 블레이드를 열었을 때 => 직사광 유입

외부차양 설치모습

외부차양 및 광선반 효과

친환경 외부공간

