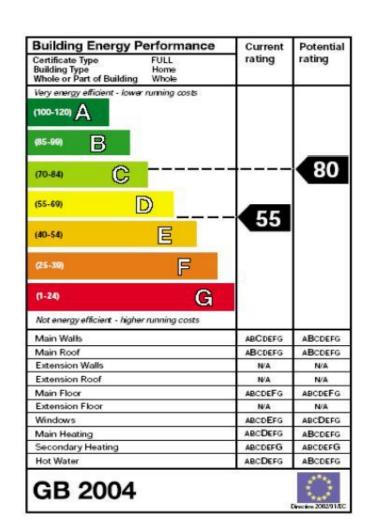
국내외 신재생에너지의 건축활용과 제도 (영국과 한국 중심)

Dr. Jae-min Kim
Senior Research Fellow
Energy System Research Unit
University of Strathclyde

김 동 호 다스컨설턴트㈜ 대표이사

유럽 에너지 정책: 소비를 줄이고 청정 에너지 도입

EU Legislation and Targets


- → CO₂ Reduction: 12.5% UK reduction on basket of GHG's based on 1990 levels by 2008–12. (Large Combustion Plant Directive, Emission Trading Scheme (EUETS) etc.)
- → Energy Efficiency: Buildings Directive 45MtC by 2010 etc (EPBD commenced Jan 2006).
- → Renewables: 12% of all energy, 22% of all electricity by 2010

UK Government

- → <u>CO₂ Reduction:</u> 20% target (1990 level) by 2010 and 60% by 2050.
- → Renewables: 10% electricity from RE by 2010, aspirational 20% by 2020 (40% in Scotland).
- → Energy Efficiency: 10MtC per annum by 2010

유럽 연합 건물에너지 성능 평가법 (EPBD)

- EU Directive for energy performance of Buildings
- ◆ Directive=> EU 가 회원국에 국내 법으로 효력을 발효하도록 하는 법 령 (통상 2년 이내).
- Article 7 Energy performance certificate
- ◆ 건축법으로 규정, 연면적 1000m² 신재생, CHP 도입의무화
- ◆ Article 10: 에너지기기 정기 점검 의무화

٠

해외 지원사례 -스코틀랜드

- Scottish Community and householder Renewable Initiative(SCHRI)
 - → 신재생에너지 지원금 프로그램운영
 - → 가정에 최고 30 %지원액 일정 액수 한도가 있음(£4,000 까지)
 - → 지원 가능 신재생에너지
 - → micro hydro-electric
 - → micro wind
 - → solar water heating
 - → solar space heating
 - automated wood fuel heating systems (boilers and room heaters/stoves)
 - → heat pumps (ground, air and water source)

۲

해외 지원사례 - 영국

Low Carbon Buildings Program

- → 신재생에너지 지원금 프로그램운영
- → PV(태양광): £2,500 또는 50% 지원
- → 풍력: £2,500 또는 30% 지원
- → 태양열: £400 또는 30% 지원
- → 소형 수력발전 : £2500 또는 30% 지원
- → 지열: £1,200 또는 30% 지원
- → 바이오매스 : £1,500 또는 30% 지원

해외 소형 풍력발전 적용 사례(1)

- 건물과의 통합 설계

Annual Output: 10,000kWh

4,200kg carbon saving per year

Cost: £25,000

해외 소형 풍력발전 적용 사례(2)

Rated Output: 2.5kWh Head weight: 190kg

Noise: 40-60 dBA(5m/s-

20m/s) Cost: Building/House scale wind turbine Noise/Vibration solved Safety proved

Speed (m/s)	4	5	6	7	8
Output (kWh)	2,473	4,282	6,333	8,403	10,251

태양광을 이용한 건물과의 통합 설계

옥상 지붕에 밖으로 테라스처럼 걸쳐 놓은 모양의 flat roof glass laminate 타입의 solar PV – Design 효과 총 347 m2 크기의 패널 18,000 kWh 전력생산 10,224kg co2 saving 효과

PV 해외사례 - Tesco Gas Station

96장 PV판 사용 12,700kWh 연간생산 5.5ton 의 co2 saving

Building integrated PV

Hueton Fire Station

PV 해외사례 - CIS Tower

The CIS solar tower is due to be completed in early 2006

총 3,972 m2 규모의 panel 183,000 kWh 전력생산 103,944 kg co2 saving 효과

Cost effective - photovoltaic (PV) cladding panels are cheaper than most commonly used high quality cladding materials

Differentiate your brand - solar facades create

striking buildings, which highlight environmental commitments to your stakeholders and potential partners

'n

현재 국내 제도 개요(1)

- ◆ 신재생에너지 개발 및 이용●보급촉진법에 근거
- ◆ 공공기관 (국가기관, 지자체, 투자•출자•출연기관, 특별법 인 등)
- ◆ 건축법상 건축 연면적 3000 ㎡ 이상의 건축물 신축시 공 사비의 5% 이상을 신재생 에너지 설비에 투자 할 의무
- ◆ 실행 대상(대통령령이 정하는 자)
 - → 정부출자기업체
 - → 정부출연기관
 - → 정부투자기관관리기본법에 의한 정부투자기관, 정부출자기업체, 정부출 연기관이 납입자본금의 100분의 50이상을 출자한 법인
 - → 지방자치단체가 납입자본금의 100분의 50이상을 출자한 법인
 - → 특별법에 의해 설립된 법인
- ◆ 의무 투자비의 10% 에 해당하는 금액 감액 가능

현재 국내 제도 개요(2)

- ◆ 대체에너지의무이용 대상건축물(11개 분야): 문화 및 집회시설, 판매 및 영업시설, 의료시설, 교육 및 복지시설(학교제외), 운동시설, 업무시설, 숙박시설, 위락시설, 공공용시설(군사시설 제외), 묘지관련시설, 관광휴게시설
- ◆ 설비는 태양열, 태양광, 지열 등 11개 신재생에너지원별 설 비로, 해당기관이 자율적으로 설비 선택하여 설치 가능
- ◆ 공공기관이 건축공사비의 5%이상을 투자할 경우 연간 약 2 천억원 이상의 대체에너지 신규시장 창출 기대: 태양광주택 기준 연간 약 8천여 호(25kW) 이상의 보급효과 발생
- ◆ 건축공사비는 건설교통부장관이 고시하는 표준건축비 기준

설비설치 면제 대상

- ◆ 건축목적, 기능, 설계조건으로 인해 신재생에너지 설비 적용이 불합리한 경우 산자부 장관의 승인을 얻은 건물은 의무화대상에서 제외
 - → 건축물의 입지조건에 의해 설치가 현저히 곤란하거나 설치하더라도 효과적인 활용이 어려운 경우
 - → 건축물에 요구되는 기능과 설계조건의 특수성으로 인하여 설비 설치시 건축물의 고유기능을 현저히 저하시키는 경우
 - → 연구용 또는 시범건축물로서 설치비용이 산정되기 어려운 경우
- ◆ 애초부터 교육연구 및 복지시설 중 학교 제외, 공공용시설 중 군사시설 제외

м

에너지 사용량과 건축비의 비교

- ◆ 3,000㎡ 건물의 평균 건축공사비 5%는 약 1억1300 만원
- ◆ 3,000㎡ 건물의 평균 총 에너지 사용량은 117.6toe/년
- ◆ 1억1300만원으로 태양광 발전기 14.125kW 규모 설치 가능(1kW 설치에 800만원 정도 소요)
- ◆ 태양광 발전의 경우 1년에 1kW용량으로 1,100kWh 생산, 14.125kW 규모로는 15,537.5kWh 생산
- ◆ 15,537.5kWh * 0.25(전력의 석유환산계수) = 3,884.4kgoe = 약 3.9toe
- ◆ 3.9toe는 3,000㎡ 건물의 평균 총 에너지 사용량의 3.3% 에 해당

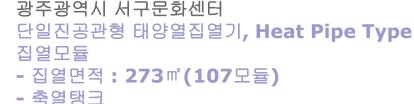
M

국내의 신재생에너지 보급 사례

◆ 신재생에너지:

- → 태양열, 태양광발전, 바이오매스, 풍력, 소수력, 지열, 해양에너지, 페기물에너지(재생에너지 8개 분야)
- → 연료전지, 석탄액화/가스화, 수소에너지(신에너지 3개 분야)
- ◆ 선택과 집중전략 부재
 - → 주요 재생가능에너지에 대해 우선순위를 두지 않음
- ◆모든 신재생에너지를 대상으로 함
 - → 보급효과나 기술경쟁력 확보에 있어 중요한 태양광이나 태양열에 집중하지 않음
- ◆ 현재 지열 선호(시범사업 10개 건축물: 지열 2,003.4RT, 태양열 1,424.9㎡, 태양광 322.5kW)

국내의 사례 (태양전지)



- •사업명: 신재생에너지 지역에 너지 사업(태양광 발전)
- •설치장소 및 내용 : 삼척 세계 동굴박람회장 태양광 시설 107kWp

- •사업명: 신재생에너지 지역에너지 사업(태양광 발전)
- •설치장소 및 내용 : 광주광역시 조 선대 기숙사 태양광시설 53kWp

국내의 사례 (태양열)

· 온수: 6톤 ,냉방: 0.5톤, 급탕; 3톤, 보조:

1톤

- 컴퓨터와 인터넷을 통한 원격시스템 제어 및 모 니터링

적용처 : 냉난방 및 급탕, 88℃

대전광역시, 대전보건대학 단일진공관형 태양열집열기, Heat Pipe

Type

- 집열면적: 70㎡ (45모듈)

- 축열탱크: 3톤

- 컴퓨터와 인터넷을 통한 원격시스템 제어

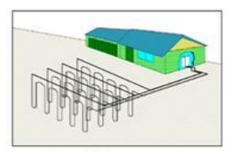
및 모니터링

적용처 : 온수급탕, 60℃

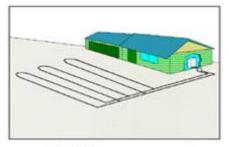
국내의 사례 (풍력 발전기)

1kWh 소형 발전기

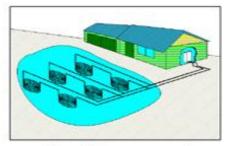
5kWh 소형 발전기


1kWh Annual Output : 4,380kWh 3kWh
Output:
13,140kWh
Wind speed
10m/s

5kWh Output: 21,900kWh

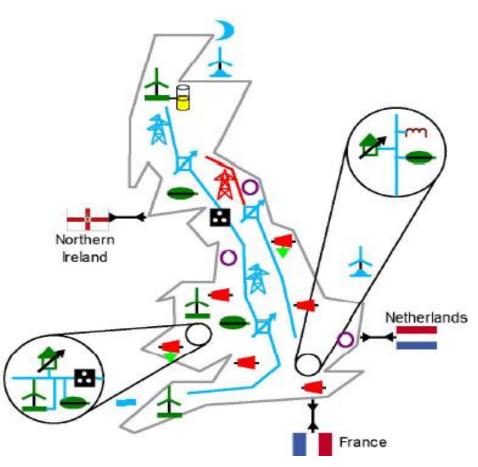

국내의 사례 (지열)

환경 영향 평가가 필요 - 지하수관리정도에 따라 신중한 검토가 필요 전기 사용량이 많음 - 히트펌프 등 사용설비 운영 투자비가 상대적으로 낮고 유지비용이 저렴하다는 이유에서 선호되는 실정


• [폐쇄형 지열원 열교환장치]

(a) 수직형 (Vertical Type)

(b) 수평형 (Horizontal Type)


(b) 수평형 (Horizontal Type)

지열 복사냉방을 위한 실험장치 100m 시추후 냉수 순환 시스템 평균 여름 온도 15℃ ~18 ℃ 평균 겨울 온도 18 ℃ ~20 ℃

신재생 보급 정책에서의 핵심이슈

■ 영국은 2050 년 전력망 시나리오를 새로 짜고 있다. 열병합과 연결한 microgeneration 보급 전략도 있다. 등등

- ◆ 에너지 효율의 향상으로 인해 피크부하 (peak-demand)가 감소.
- ◆ 풍력 발전과 열병합발전 시스템 (combined heat and power, CHP) 등의 기술력이 향상 가정
- ◆ 대규모 도시 중심: 복합가스터빈 + carbon capture, 바이오매스 열병합발 전.
- ◆ 대규모의 상업적 해상풍력 발전기, 파력, 조력
- ◆ 인구 밀집지역과 공업지역에 수요관리 프로그램

분산 전력 시스템

구분	분산전원 시스템	중앙 보급형 전력망
발전 용량	소규모 발전기 (100MW 이하)	대규모 발전기
네크워크 연결	배전망에 연결 (240V-145KV)	송전선로에 연결
네트워크 특성	Active network	Passive network
장점	■송전 시설 불필요, 송전 손실 감소 ■상대적으로 발전 부지선정 용이 ■태양력, 풍력, 연료 전지 사용으로 인한 CO ₂ 배출감소 및 에너지원의 다양화 ■소규모 발전기의 증가로 인한 전력 시장 활성화	대량 생산을 통한 전력 생산 단가가 낮음 •소수 전문인력으로 전력 네크워트 운영 가능 •네크워크 운영이 쉬움
단점	전압증가 현상, 고장전류 증가 현상 •풍력, 파력 등을 이용한 발전기 의 출력 불연속성	■발전소 부지 선정이 어려움 ■화석연료의 가격 불안정성 ■송전손실이 큼 ■화석연료를 사용하는 대규모 발전기로 인한 온실가스 배출

신재생 보급 정책에서의 핵심이슈

- ◆ 신재생에너지의 한계:
 - → 유지보수비가 크다.
 - → 전력공급업체인 한전이 꺼려함
 - → 공급업체의 영세화로 영속적인 관리와 인지도 상승의 어려움
- ◆혐오 시설로 여겨짐
 - →돌지 않은 풍차
 - → 발전만을 위한 태양광 시스템
 - → 미련하지 못한 태양열 시스템

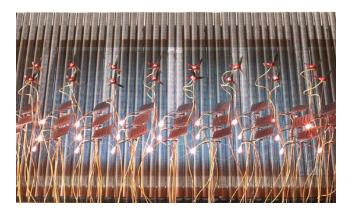
대형 풍력 발전기

옥상에 설치된 태양광 시스템

주차장에 설치된 태양열 시스템

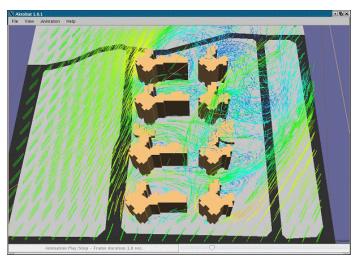
건축에 신재생 도입시의 이슈

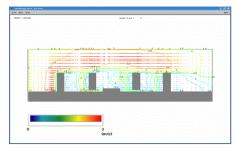
◆ 건축가가 신재생에너지를 직접 디자인 요소로 사용



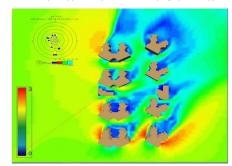
위치: Hull, UK

건물 이름 : Humber Centre for Excellence in the Built Environment

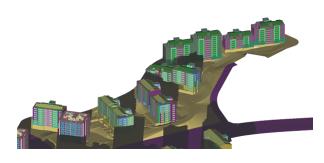

준공일: 2006



건축에 신재생 도입시의 이슈


건물에너지 시뮬레이션을 통한 사전 평가

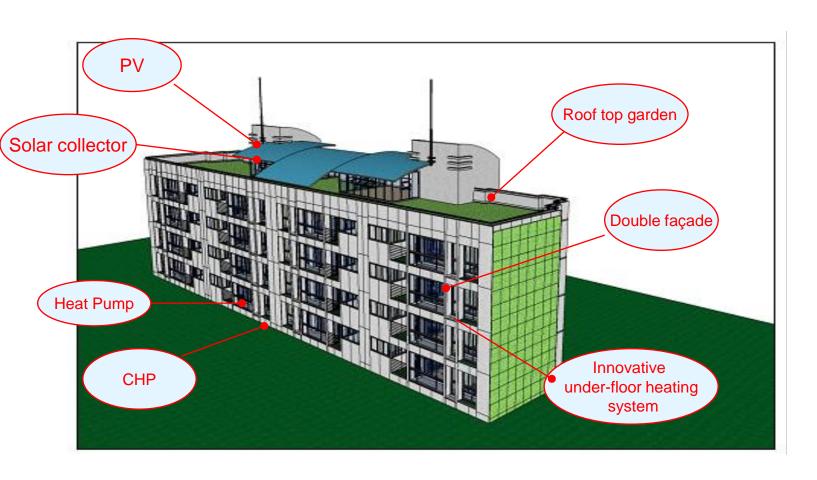
단지 기류 패턴

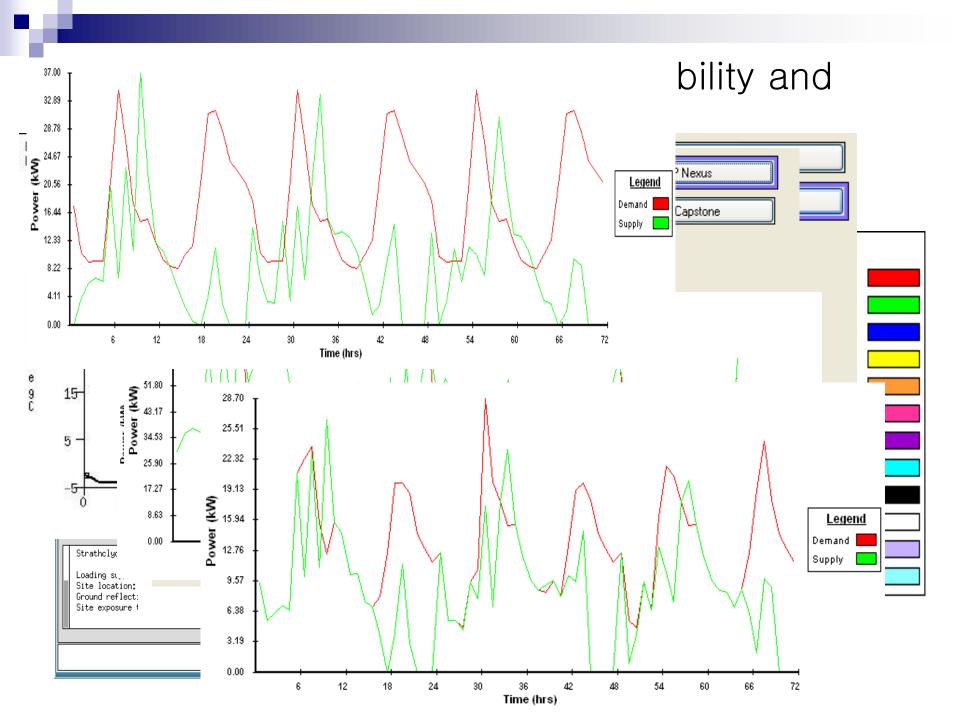


높이에 따른 기류 패턴

속도장

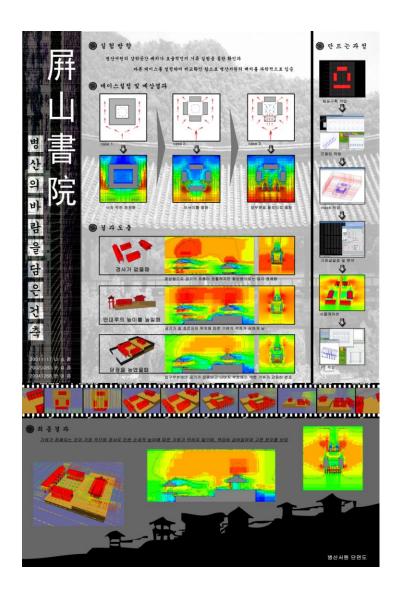
일조 평가

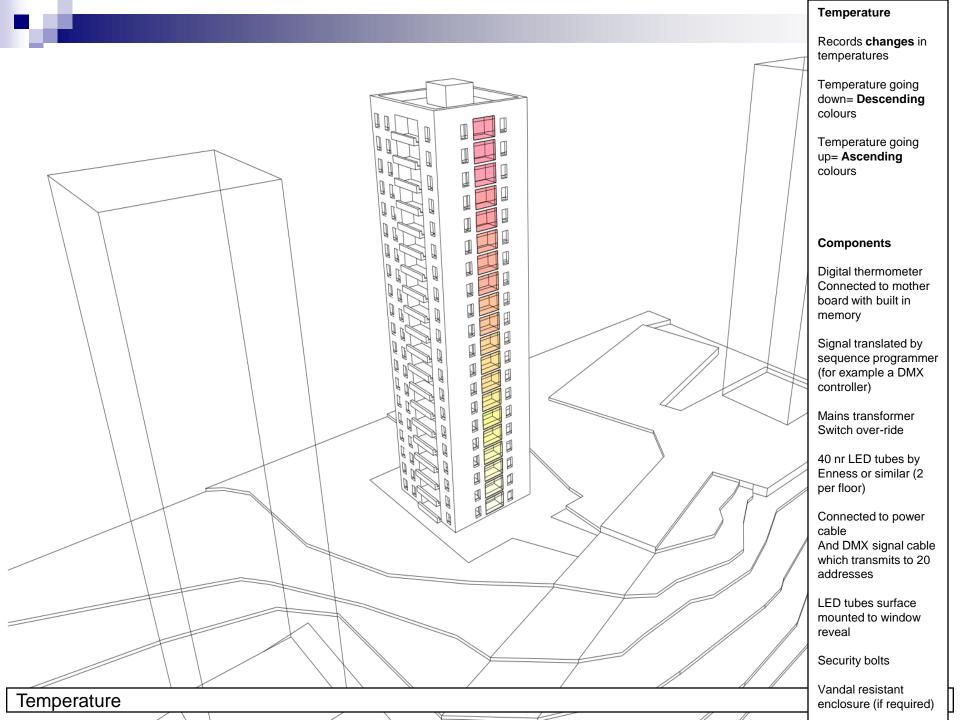

동지 09:00

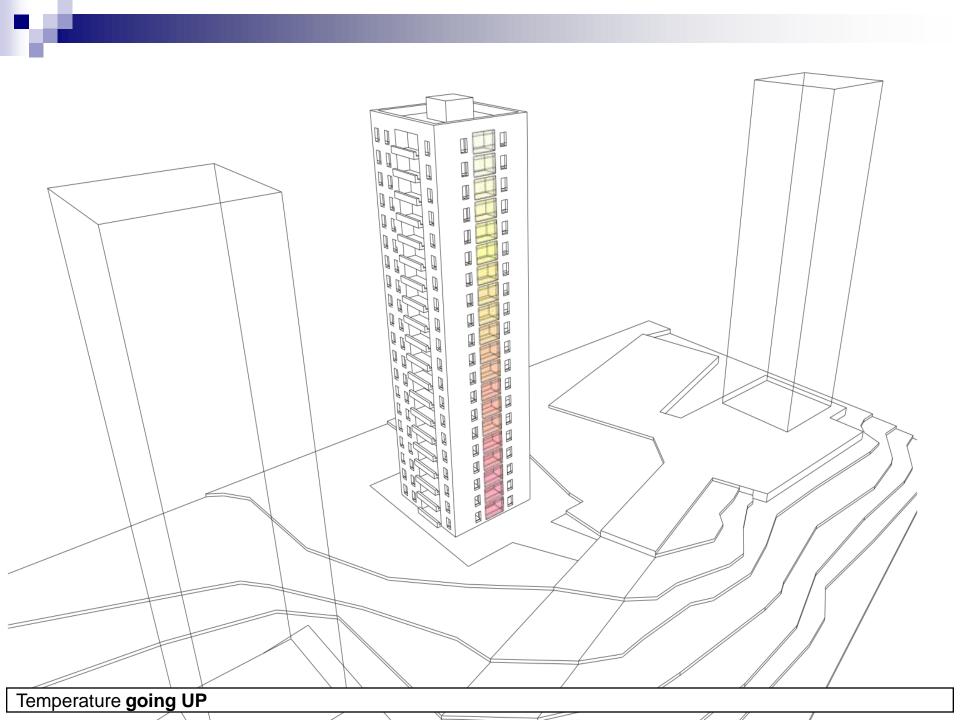

동지 12:00

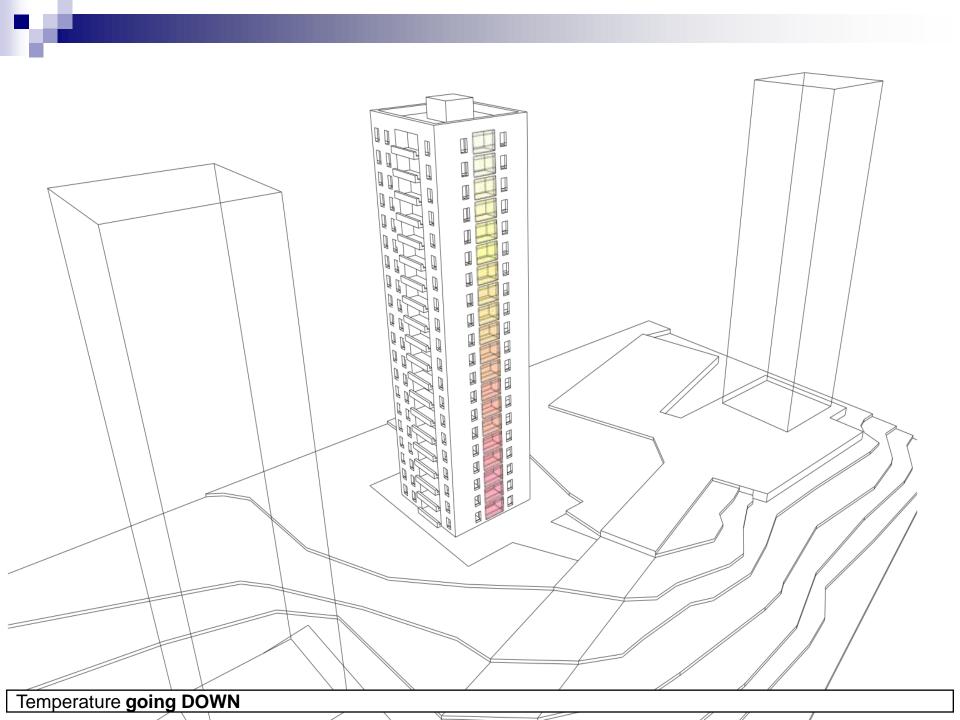
동지 15:00

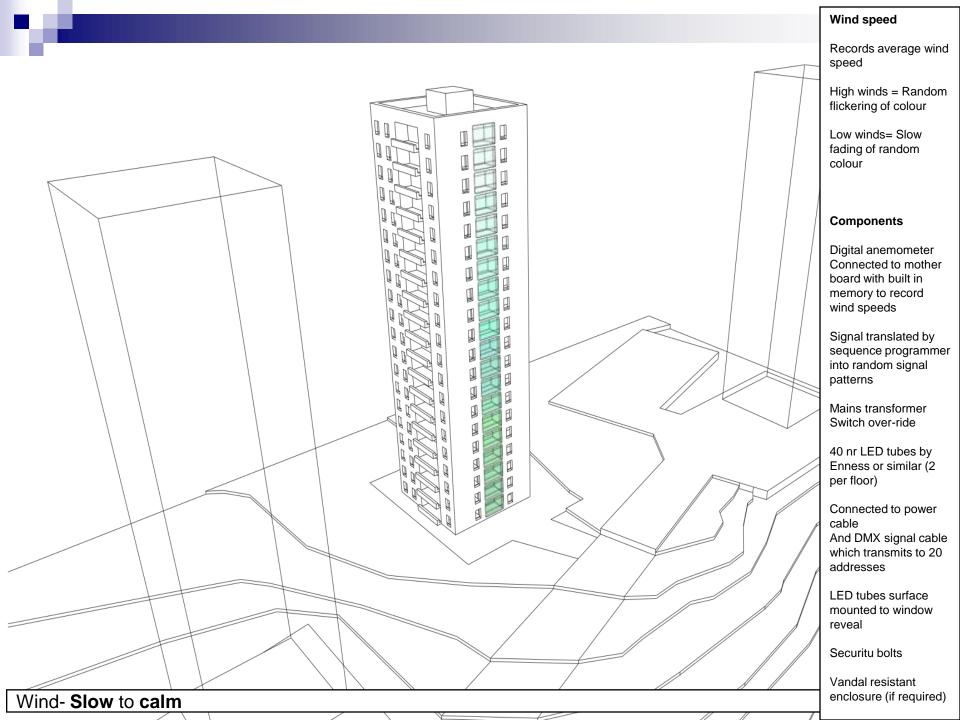
건축에 신재생 도입시의 이슈

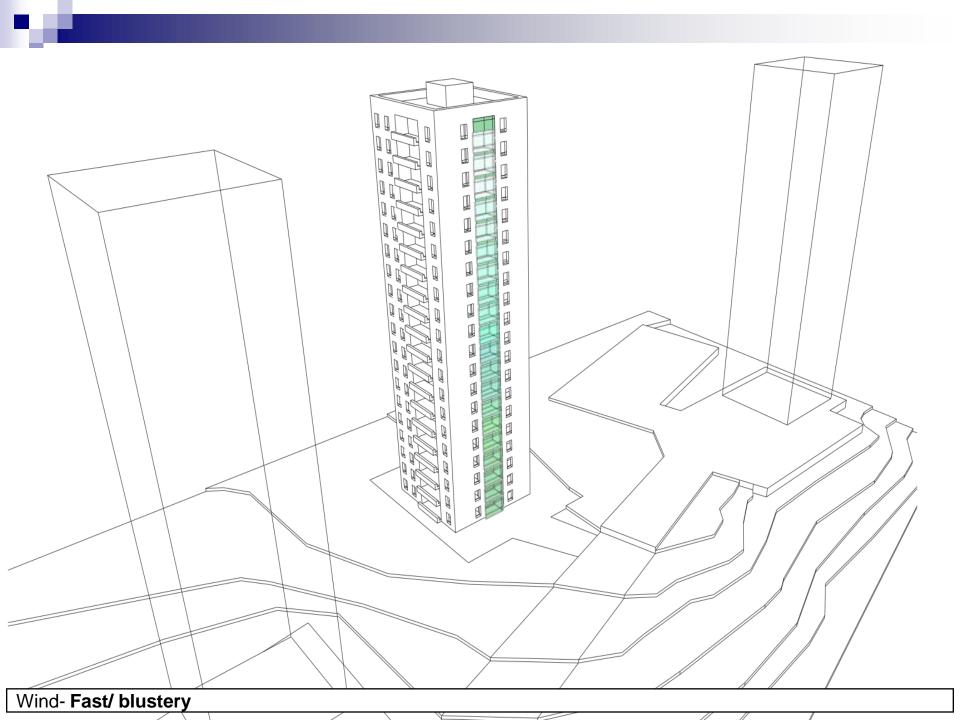

Design aspect of demand/supply matching

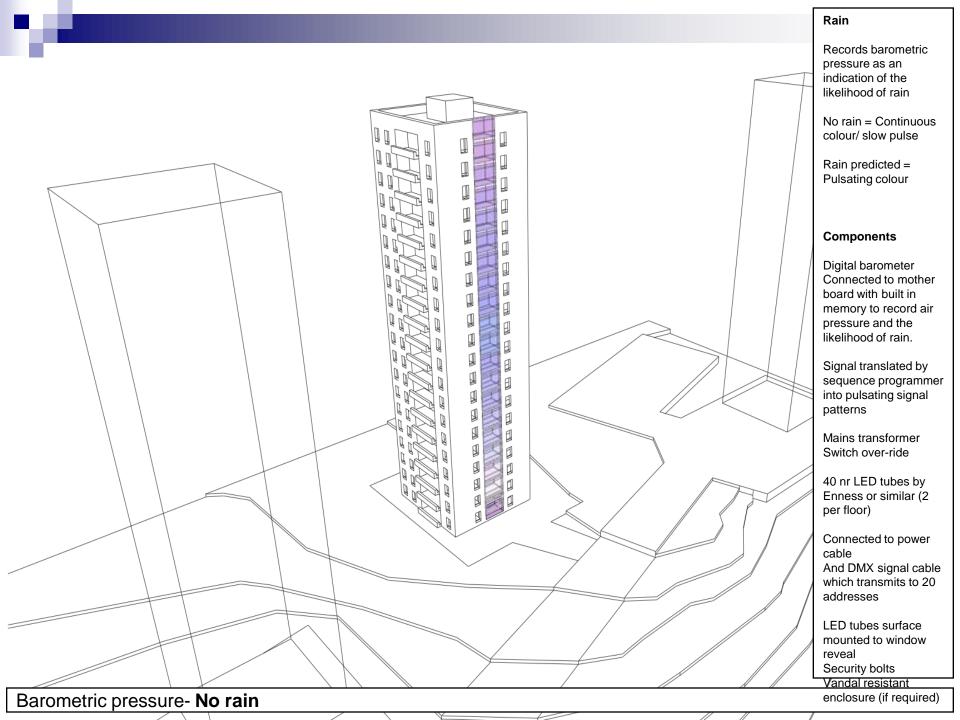


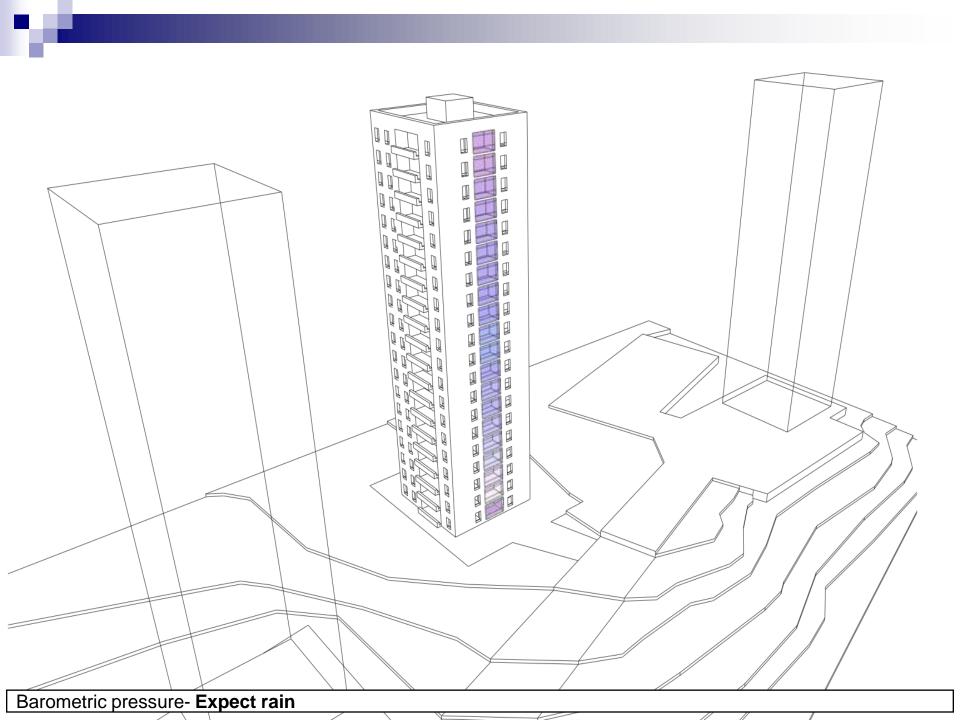



건축가의 진보적 접근




- ◆ 고도의 기술 교육 필요
- ◆ 시대의 변화에 따른 건축가들 의 적응이 필요
- ◆ 신재생에너지 디자인 주체가 기계나, 전기과 출신이 아닌 건 축가들이 주요 역할을 해야 함





건축가의 진보적 접근

■ 기술적 사회적 건축적 어프로치가 통합적으로 이루어 져야 가시적 성과가 날것이다

프로젝트 명: Architect's London Oasis

설명: 수직형태의 풍력 발전기를 통해 발전을 하고 시원하고 깨끗한 공기를 제공하고 아름다운 음악과 조명으로 광장을 이용하는 사람들에게 기쁨을 줌

