Mid-term Outcome and Future Plan of Bio-ethanol Project in Korea

Presented by Dr. CHOONG-SUB JUNG

Outline of Project

Results of 1st Year

Future Plans

Progressing Status of 2nd Year

<image>

Investigation of Related Laws and Regulations Petroleum Business Act was enacted in 1970 and revised 18 times

Petroleum Business Act was revised a full-scale revised to Petroleum & Petroleum Alternative Fuels Business Act in 2004

It has possible to revitalize of supply Petroleum & Alternative

Fuels in Korea

Investigation of Related Laws and Regulations

Petroleum & Petroleum Alternative Fuels Business Act is defined as fuel which can alternate petroleum products without structure modification of combustion equipments (the exclusion of coal and natural gas)

Petroleum Alternative Fuels include bio-diesel, bio-ethanol, coal liquefaction, natural bitumen and emulsification

Investigation of Related Laws and Regulations

The Standard of Automobile Gasoline in Petroleum & Petroleum Alternative Fuels Business Act

Classification Items	No. 1 (Regular)	No. 2 (Premium)			
-	-	-			
-	-	-			
Benzene content (Vol. %)	Unde	er 1.0			
Olefin content (Vol. %)	Under 18 (21)				
Oxygen content (weight %) *	Over 0.5 ~ under 2.3 (winter over 1.0 ~ under 2.3)				
Methanol content (weight %)	Unde	Under 1.0			

* Oxygen content is oxygen weight in MTBE, ETBE and bio-ethanol

Progressed Research

Feasibility Study for the Implementation of the imported bio-ethanol (KIER, 2005. 12)

- The need of actual assessment for production, transportation and use of bio-ethanol
- The expense of infrastructure construction make the determination of economic feasibility and the need of actual assessment before commercialization
- The Problems of corrosion and phase separation can be arise by the moisture in quality characteristics of bio-ethanol fuel

Outline of Project

Research of Actual Assessment for Introduction of Bio-ethanol Fuel

Period

2 Years : August 1, 2006 ~ July 31, 2008

- 1st Year : August 1, 2006 ~ July 31, 2007
- 2nd Year : August 1, 2007 ~ July 31, 2008

Participation

Company

- Korea Institute of Petroleum Quality (KiPEQ)
- **5 Oil refineries**
 - SK Energy, GS Caltex, S-Oil, HD-Oil bank, SK-IC
- 1 alcohol company
 - Changhae ethanol

Outline of Project

Results analysis of quality characteristics for bio-ethanol fuel and The establishment of plans for actual assessment

1. Foreign and Domestics Status

1-1. Foreign status

- Supply status of USA(E10, E85 etc)
- Supply status of China(E10), India(E5)
- \bigcirc Analysis of E3 actual assessment of Japan

1⁻². Domestic status

 \bigcirc Producer : Refinery \rightarrow Oil reservoir (Tank truck, Oil pipeline)

 \bigcirc Customer : Oil reservoir \rightarrow Gas station (Tank truck)

 \bigcirc Status of domestic gas station and distribution infrastructure

2. Lab Test (Quality characteristics of BE fuel)

(Vol.%)

>27

(Vol.%)

<18

2-1. Manufacture of bio-ethanol fuel Bio-ethanol : Anhydrous bio-ethanol 99.5% Manufacture of sub-octane gasoline : Manufacture blending stocks (B/S) depending on refinery specifications such as vapor pressure and octane number etc Supply to sub-octane gasoline to satisfy the specification of **The Act for Petroleum and Alternative Fuels** Vapor pressure (37.8 °C, kPa) **Octane number Aromatic** Olefin

Winter

<70

(RON)

91~92

Summer

<52

2. Lab Test (Quality characteristics of BE fuel)

2-2. Major properties of bio-ethanol fuel

▷ Vapor pressure

🔿 🗢 E5 : increase 7 ~ 8 kPa, E5 ~ E10 : stable, E10 ~ : decrease

- (vapor pressure of bio-ethanol : ≈ 15 kPa)
- \rightarrow increment of vapor pressure : bad influence to restart
 - reed to proper vapor pressure

Distillation property

 ○ 50% distillation temperature was decreased to 1 0~20 °C due to the blending of bio-ethanol → bad influence to restart
 □ reed to proper distillation property

> Octane number

Increment of 2 ~ 2.5 when BE5 was blended
 * RON : 125~130, MTBE : RON,115~120

2. Lab Test (Simulation of phase separation due to water content)

2-3. Effect of water content on bio-ethanol ratio

 \bigcirc Simulation of phase separation on gasoline and ethanol due to water content \rightarrow Decrement of octane number, bad influence upon fuel feeding system

Water content (vol. %)

% Phase separation take place when water content is over $\underline{0.2\%}$ at $\underline{E5}$

- \bigcirc Phase separation (at 20 $^\circ C$)
 - E3 : water content <u>≈ 0.14 Vol.%</u>
 - E5 : water content <u>≈ 0.19 Vol.%</u>
 - E10 : water content ~ 0.54 Vol.%

2. Lab Test (Corrosion test)

O White particle was formed on aluminum plate due to strong corrosion, and weight was decreased.

****** 100 °C × 720 h = almost 15 yr (according to Japan Automobile Research and Institute) ∴ 100 °C, 120 h \rightarrow 2.5 yr

AI	Sample	Initial state	Sub Octane Gasoline	E5	E10
	Variation of appearance				
	Weight variation	-	0.0002	0.0002	-0.0190

2. Construction Status of Storage Tanks and Line Blending

Construction status (SK Incheon Oil)

- Scheme of storage tanks and line blending
 - bio-ethanol tanks (Stainless steel, protection of water mixing (Installation Silica Dessicator))
 - sub-octane gasoline tanks (Carbon Steel)
 - Installation of control system for line blending
 - 🖙 ethanol mixing ratio : 1~10 Vol.% blending

3. Construction of Pilot Plant for Water Free Bio-ethanol

Construction place (Changhae Ethanol)

Pilot Plant for bio-ethanol

- production capacity : 1 kL/day, bio-ethanol purity : > 99.5 Vol.%
- building : 4th floor (30 m), PLC control system

17/27

4. Bio-ethanol Analysis of the Mixture of **Gasoline and Ethanol**

Results Selection of optimum Analysis of bio-ethanol scintillation agent 0.040 **Bioethanol** 10% 2, Synethanol 10% 0.035 3; Bioethanol 5% + Synethanol 5% 0.030 0.30 Opti Fluor O 0.025 2: Ultima Gold F Intensity Insta Gel Plus 0.25 0.020 Optiphalse HiSafe 3 Optiscint HiSafe 0.015 0.20 0.010 Intensity 0.005 0.15 0.000 0 200 200 Energy Channel [-] 0.10 Mixing ratio [Vol.%] 0.05 Sub-octane gasoline : Bioethanol = 0.00 90:10 200 300 400 100 800 700 800 Sub-octane gasoline : Synethanol = Energy Channel [-] 90:10 Sub-octane gasoline : Bioethanol :

800

1000

CPM

5.04

1.51

3.21

Synethanol = 90:5:5

Progressing Status of 2nd year

Scheme of production, transportation, storage and supply in bioethanol fuel blending

Progressing status of 2nd year

Proceeding status of 2nd year

Future Plans

- Study of actual assessment for Oil reservoir
- Management of blending facilities of sub-octane gasoline and bio-ethanol for

actual assessment

- Blending control system and line mixer of reservoir tank
- Check the performance of facility like volume control system
- Analysis of quality for a final product, sub-octane gasoline, and bio-ethanol

Study of the actual assessment of gas station

- Actual assessment of demonstration gas station
- Check the moisture amount in storage tank when sampling
- Analysis of quality change (per week)
- Performance test of lubricator (per month)

Future Plans

Determination of optimized distribution infrastructure and bioethanol ratio

- Find the reason for phase separation by moisture and corrosion problem of metal, rubber
- Regular quality test of the demonstration gas station and establish the effective protect method due to moisture
- Indicate the optimized distribution infrastructure for Korea environment

Future Plans

Application of government policy for introduction of bio-ethanol

- Presentation of quality standard for bio-ethanol (BE100)
- Application of government policy and establishment of distribution infrastructure for introduction of bio-ethanol
 - *** The first consideration of government policy**
 - The stable supply of raw materials
 - Economic feasibility for the correspondence of the existing fuel

Thanks for your attention!

