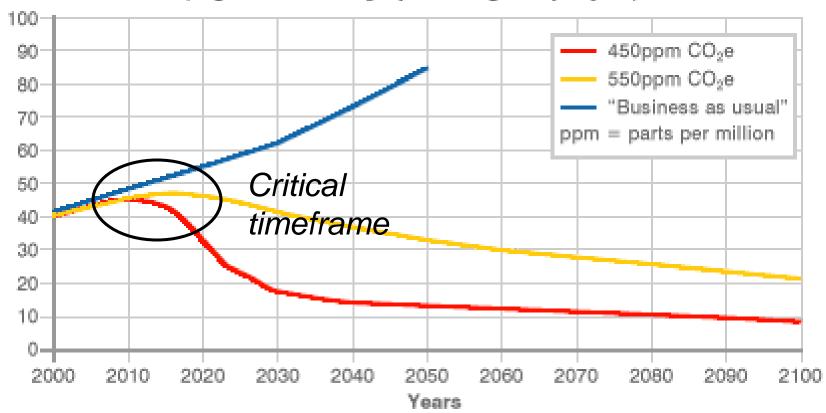


outline


- Energy Efficiency 'low hanging fruit'
- Decentralised (on-site) energy generation
- Low-e buildings TAMM*
- Urban regeneration + Retrofitting

*Targets, Analysis, Measurement and Monitoring

2007-2015

EMISSIONS PATHS TO STABILISATION

Global Emissions (Gigatonnes of CO₂ equivalent gases per year)

Urgent - act NOW!

Building Energy Efficiency

20-30% efficiency increase NOW

- Upgrade building services technology
 - Motors, drivers & ballast
 - Sensors and control systems
- Dynamic (AI +NN) BEMS (Building Energy Management Systems)
- ~3yr Pay-back on ESCO's (Energy Service Companies)
 Retro-fit
- Future innovations + technology upgrades

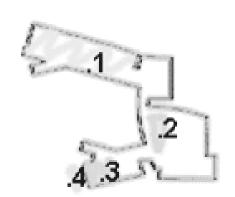
Decentralised energy

- Localised energy generation
 - Make it where its used & needed
 - Avoid T&D losses (7-10%)
- Local DC grid (mini-grid)
 - Most equipment & electronics (semi-conductors) operate on Direct Current (DC)
 - Avoid conversion losses (DC-AC-DC) (10-20%)
- CHP (Combined Heat & Power) + Cooling (Tri-generation) achieves ~80%+ efficiency (best available centralised electricity plant = 52%)

On-site generation

Building integrated:

- Solar electric (PV) electricity
- Vertical axis wind turbines (VAWT) electricity
- Solar thermal hot water/air conditioning
- Ground source cooling air conditioning
- Wastewater recycling (generates biogas)
- Waste-to-energy (organic waste to biogas)
- CHP Gas/LNG/Biogas (links intermittent RETs)


Available + cost effective NOW

Fuel cells (also CHP)
 natural gas/biogas/hydrogen

Presently maintenance costs high

Promotes better energy supply security

Hong Kong School 2004

- 1 Deck-shading (CIS)
- 2 Rooflight (Poly-si)
- **3** S.SE facing Canopy (A-si)
- **4** Vertical façade (omitted)

View from residential tower (south)

40kW PV array (~ 65% roof cover) generates 9% annual electricity need, (target 10%) PV system costs within standard government budget for schools.

School design by Architectural Services Department, HK Government; PV systems design, installation supervision, monitoring & data acquisition by HKU PV Research Cost Analysis by DLS Management International.

HK Office Tower

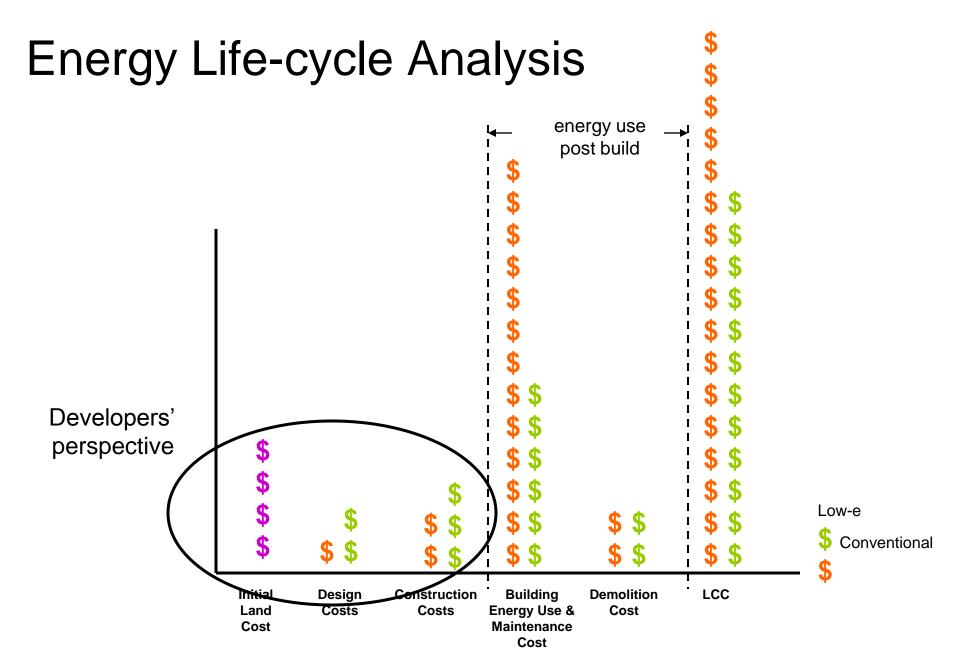
PV-generated electricity powers window shades to prevent interior heat build-up(not grid-tie application)

One Peking Road, Hong Kong Rocco Design & Partners for Glorious Sun

Case study

Wal-Mart Store, Aurora, Colorado, USA Reported (February 2006)

- 3-on-site generation technologies
 - 50kW wind turbine
 - 134kW solar electric installation
 - 60kW gas-fired micro-turbines
- Evaporative cooling including
 - Low-flow displacement ventilation
- Energy-saving:
 - Daylighting and EE lighting technologies
 - Solar wall pre-heats ventilation air
 - Waste-oil boilers heat water for underfloor heating


Property

Responsible for ~70%* of total energy use 60+ years operational life

A project developed today will impact well into 2080

But used Property developers have short-term focus

*Normally referenced as 40-50% but higher when embodied energy included See Building Energy Efficiency, Asian Business Council, October 2007

TAMM*

Building Energy Performance

- BECS (Building Energy Codes & Standards) government tools
- Assessment tools (construction industry) adopted by governments
 - US Green Buildings Council (LEED) widely applied
 - UK BREEAM
 - Japan CASBEE
 - Australia Green Star
- Benchmark building sectors, certification & labelling
 - peer pressure + market leadership

Mandatory/Voluntary

- Enforcement
 - Government or self-assessment
- Market forces
 - easy finance, faster sales, leverage on price
- Non-fiscal tools/CSR
 - awards, publicity, prestige, share value

Urban regeneration

Developers, Design Professionals & Clients

- Raised awareness (Building Performance Assessment tools)
- Corporate Social Responsibility
- Don't knock down retro-fit
- Appreciative of \$ savings (time)
- Market advantage in 'green' features
 (Green Roof [HSBC] + Planted Walls)

Retro-fitting

- Saves embodied energy
- Cultural heritage
- Saves construction time(\$)
- Retrofit with RETs
 - PV installation
 - Ground source cooling
 - Ground source heating

'Brown' Sites

New-build on 'brown sites':

- Passive design principles climate responsive
- 'Long-life, low-energy, loose-fit' for future adaptability
 (Note bedroom-size restricts Hotel upgrade results in demolition)
- Integrated RETs on-site generation for energy security
- Recycling waste-<u>water</u> (irrigation/flushing) + MSW onsite (biogas)
- EE awareness raised with localised generation

Pioneer BIPV

Fuel cell in the basement + PV on the facades

4 Times Square New York, 1998

Shanghai's Dongtan Eco-city (Zero carbon emissions) city of the future : Arups

Conclusion

- Energy efficiency
 - Targets and goals for EE + RETs
 - Building design from passive design principles
 - Design quality + time on system analysis & sizing
- On site generation + energy efficiency
 - CHP + RETs with BEMS
 - Savings from fossil fuel costs + energy security
- Benchmarks through Green Buildings ratings
 - Market forces + peer pressure
 - Building performance rating against competitors
 - Maximum advantages CSR, sales, awards, publicity

Energy security

Domestic solid waste + anaerobic digester = Biogas

Thank you

close.josie@gmail.com

Tel (852) 60780797