### United Nations Forum on Energy Efficiency Seoul, 17-18th December

# ENERGY EFFICIENCY IN PUBLIC BUILDINGS AND MUNICIPAL ENERGY PLANNING



The Experience of Bulgaria



Seoul, 17-18th December

### THE LEGISLATION SUPPORT OF THE ENERGY EFFICIENCY IN BULGARIA

- EU Directives for Energy Efficiency (EE)
- State Energy Strategy (2002)
- Law for Energetics (2003)
- Law for Energy Efficiency (2004)
- Law for Renewable Energy Sources (2007)
- Related Regulation, Norms and Standards
- Buildings' Energy Certificate/Labels
- National Programs for EE in the Building Sector



### United Nations Forum on Energy Efficiency Seoul, 17-18th December

### THE FINANCIAL SUPPORT FOR ENERGY EFFICIENCY IN BUILDING SECTOR

- Fuels and energy prices policy/tariffs
- EU Programs for the New Member States
- State Subsidies for Public and Private Buildings
- Funds for EE and RES supported by WB, EBRD, others
- Local Bank Loans for EE
- UN and EU International Projects for Sustainable Development
- Public-Private Partnership Financing Schemes



Seoul, 17-18th December

### **ENERGY EFFICIENCY IN BUILDING SECTOR Example (1): Price Wise Policy Aproach:**

The Biomass and the Natural Gas energy sources are the most attractive way for heating in the country

Current Fuel Prices Comparison, Bulgaria, July 2007

| Fuel/Energy<br>Type  | Energy<br>content<br>kWh | Unit   | Average<br>Heating<br>System<br>Efficienc<br>y % | Fuel<br>Price,<br>euro/unit | Unit           | Heat<br>Production<br>Cost<br>euro/kWh | Monthly<br>Heating<br>Cost*<br>euro | Rate % |
|----------------------|--------------------------|--------|--------------------------------------------------|-----------------------------|----------------|----------------------------------------|-------------------------------------|--------|
| Coal                 | 4.1                      | kWh/kg | 80                                               | 80                          | eur/ton        | 0.025                                  | 48                                  | 58.5   |
| Wood                 | 3.1                      | kWh/kg | 85                                               | 32                          | eur/m3         | 0.026                                  | 51                                  | 62.2   |
| Wooden chops         | 2.6                      | kWh/kg | 85                                               | 60                          | eur/ton        | 0.028                                  | 55                                  | 67.1   |
| Cherry/plum pits     | 3.4                      | kWh/kg | 85                                               | 102                         | eur/ton        | 0.035                                  | 70                                  | 85.4   |
| Wooden pellets       | 4.8                      | kWh/kg | 85                                               | 166                         | eur/ton        | 0.041                                  | 81                                  | 98.8   |
| Natural gas          | 9                        | kWh/m3 | 90                                               | 336                         | eur/kilo<br>m3 | 0.042                                  | 82                                  | 100.0  |
| Propane Gas<br>(LPG) | 12.8                     | kWh/kg | 93                                               | 795                         | eur/ton        | 0.062                                  | 123                                 | 150.0  |
| Electricity          | 1                        | kWh    | 98                                               | 0.075                       | eur/kWh        | 0.076                                  | 152                                 | 185.4  |
| Light Fuel Oil       | 11.6                     | kWh/kg | 90                                               | 953                         | eur/ton        | 0.091                                  | 181                                 | 220.7  |



Seoul, 17-18th December

### **ENERGY EFFICIENCY IN BUILDING SECTOR Example (2): Price Wise Policy Aproach:**

The purchase price of power produced from Renewable Energy Sources as photovoltaic, wind and biomass is attractive for the producers

Energy produced from RES – Purchase Prices Comparison, Bulgaria, 2007

| > H | vdro   | power | <br>41 | .03-43.59 | eur/MWh     |
|-----|--------|-------|--------|-----------|-------------|
|     | y ai o | PONCI |        | ,00 -0,00 | , Cailiniai |

- > Wind power ...... 61,54 eur/MWh (up to 10 MW, before 2006)
- > Wind power ...... 80-89,74 eur/MWh (since 2006)
- > Photo voltaic power ........... 368,21-401,03 eur/MWh (more/less than 5kW)
- > Biomass power (1)......10,77 eur/MWh (up to 5 MW, wood waste)
- > Biomass power (2)......83,08 eur/MWh (up to 5 MW, agriculture residues)
- > Biomass power (3)......94,36 eur/MWh (up to 5 MW, wild plants residues)

For comparison: Electricity average price = 75 eur/MWh



Seoul, 17-18th December

### **ENERGY EFFICIENCY IN BUILDING SECTOR Example (3): Environment Protection Policy Aproach:**

The Electricity, the Coal and the Light Fuel used for heating are the worst CO2 polluters

Calculation of CO2 Emissions Reduction (ref.National Regulation)

| >>>                         | INPUT DATA                          |                               | >>>                                        | OUTPUT                                     |                           |
|-----------------------------|-------------------------------------|-------------------------------|--------------------------------------------|--------------------------------------------|---------------------------|
| Type of<br>fuel<br>or power | Saved fuel<br>or electricity<br>kWh | Coefficient<br>of losses<br>% | Reference values of CO2 emissions gCO2/kWh | Reduced annual<br>CO2 emissions<br>kg/year | Rate of<br>Eco<br>Benefit |
| Fuel Oil                    | 1 000                               | 10                            | 311                                        | 342                                        | 3                         |
| Natural Gas                 | 1 000                               | 10                            | 247                                        | 272                                        | 6                         |
| Propane Gas (LPG)           | 1 000                               | 10                            | 272                                        | 299                                        | 5                         |
| Black Coals                 | 1 000                               | 20                            | 439                                        | 527                                        | 2                         |
| Brown Coals                 | 1 000                               | 20                            | 452                                        | 542                                        | 2                         |
| Wood                        | 1 000                               | 5                             | 6                                          | 6                                          | 9                         |
| Wood chips                  | 1 000                               | 5                             | 32                                         | 34                                         | 8                         |
| Wood pellets                | 1 000                               | 25                            | 43                                         | 54                                         | 7                         |
| Electricity                 | 1 000                               | 300                           | 683                                        | 2 732                                      | 1                         |
| TOTAL =                     | 9 000                               | -                             | -                                          | 4 808                                      |                           |



Seoul, 17-18th December

#### **ENERGY EFFICIENCY IN BUILDING SECTOR**

**Example (4): Regulation and Standards Policy Aproach:** 

The Current Bulgarian Standards partially complies to the severe EU standards versus building heat losses protection and well behind from the listed Low/Passive Energy Buildings thermal performance

Comparison of Thermal Performance of Building Envelope

(U-values) for some EU regions, ref. EU Green Buildings

| U values in W/(m2.K)                                 |                                 |                                                                                        |                                                  |                            |  |  |
|------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------|--|--|
| Building Components:                                 | Low/Passive<br>Energy Buildings | Severe Standards<br>(North&Mid EU)                                                     | Weak Standards<br>(South EU)                     | Bulgaria, current standard |  |  |
| External Walls                                       | U < 0.15                        | 0.15 <u<0.40< td=""><td>0.40<u<0.65< td=""><td>U&lt;0.50</td></u<0.65<></td></u<0.40<> | 0.40 <u<0.65< td=""><td>U&lt;0.50</td></u<0.65<> | U<0.50                     |  |  |
| Windows/Doors                                        | U < 0.70*                       | 1.25 <u<2.50< td=""><td>2.50<u<3.25< td=""><td>U&lt;2.6</td></u<3.25<></td></u<2.50<>  | 2.50 <u<3.25< td=""><td>U&lt;2.6</td></u<3.25<>  | U<2.6                      |  |  |
| Roof/Ceilng                                          | U < 0.15                        | 0.22 <u<0.45< td=""><td>0.45<u<0.90< td=""><td>U&lt;0.30</td></u<0.90<></td></u<0.45<> | 0.45 <u<0.90< td=""><td>U&lt;0.30</td></u<0.90<> | U<0.30                     |  |  |
| Floor/Basement                                       | U < 0.15                        | 0.15 <u<0.40< td=""><td>0.40<u<0.65< td=""><td>U&lt;0.50</td></u<0.65<></td></u<0.40<> | 0.40 <u<0.65< td=""><td>U&lt;0.50</td></u<0.65<> | U<0.50                     |  |  |
| *For transparent elements (0.15 for opaque elements) |                                 |                                                                                        |                                                  |                            |  |  |



### Seoul, 17-18th December

### **ENERGY EFFICIENCY IN PUBLIC BUILDINGS**

- (1) In general the public buildings are characterized by:
- > intermittent demand for heating, therefore the building envelope and structure's thermal inertia should be respected by the adopted heat insulation system
- > high internal gains (people, lighting, equipment), therefore more cooling is needed
- > high glazing façade ratio (especially the newly constructed office buildings), therefore it needs less heating, but more cooling and also building orientation might be an important energy saving factor for the whole building life
- > high quantity of treated fresh air, therefore they needs more energy;
- > some consume more hot&cold water, therefore they needs more energy;



**Center for Energy Efficiency** 

### Seoul, 17-18th December

### **ENERGY EFFICIENCY IN PUBLIC BUILDINGS**

- (2) In general the public buildings are characterized by:
- > most are frequently visited, therefore more energy is needed to protect the entrances to eliminate the stack effect (with high rise buildings)
- > high level complexity of the building services equipment, therefore reliable building or energy management system is needed
- > higher noise level (people, lighting, equipment), therefore they needs more energy and efficient equipment, materials, and special systems for noise reduction
- > higher rate of fire and safety protection, therefore more energy is needed
- > higher demand for façade cleaning, therefore more energy is needed



Seoul, 17-18th December

#### **ENERGY EFFICIENCY IN PUBLIC BUILDINGS**

#### and:

> most are bigger urban polluters, therefore special attention as buildings and energy consumers is required



### **Conclusion:**

The energy efficient design of new and renovation of existing public buildings is a complex process, which requires interdisciplinary aproach, specific knowledge, sofisticated tools, and widespread social awareness and support



Seoul, 17-18th December

### **Municipal Energy Planning**

### Methodology



The Experience of Bulgaria



Seoul, 17-18th December

# Why Municipal Energy Planning? (MEP)

Municipal Energy Planning -

Systematic approach for energy management at local/municipal level

Driving force and effective instrument to achieve the ambitious goals and objectives of common EU policy for sustainable development



Seoul, 17-18th December

# Which are the main products of the MEP process?

Municipal Energy Strategy – MES (long-term)

Municipal Energy Programme - MEP (medium term)

Municipal Energy Action Plan – MEAP (short term)

Investment Programme - IP



Seoul, 17-18th December

# What is Municipal Energy Programme?

Key component of the overall development strategy of the municipality

Political document outlining goals, objectives and frames of all local energy aspects



Seoul, 17-18th December

# Energy programme or Energy Efficiency programme?

Tendency for energy sector decentralization and growing use of local renewable energy sources make Energy planning on local level possible

# MEP for municipal property or MEP for the municipal territory?

All energy end-users and energy producers on the municipal territory make sense for sustainable local development policy (After all, we have only one – our municipality environment!)



Seoul, 17-18th December

## What is Municipal Energy Database?

MEDB is a key prerequisite for successful energy planning and management

The establishment of MEDB is the first essential condition to ensure long term sustainable MEP process

MEDB should consists of data about municipal property and also data about all energy producers and energy end-users on the municipal territory



Seoul, 17-18th December

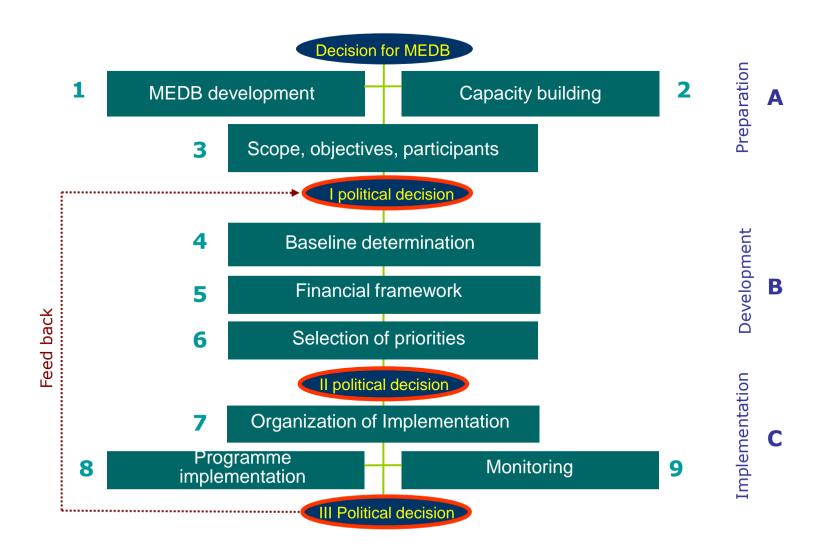
# Which municipal functions are covered by the MEP?

Four basic municipalities' functions:

Consumer - Producer - Regulator - Motivator



Seoul, 17-18th December


### What the 4 functions lead to?

Energy Consumer & Producer – lead to: INVESTMENTS

Energy Regulator & Motivator – lead to NON INVESTMENT ACTIONS



#### Seoul, 17-18th December





### Seoul, 17-18th December

|            | PLANNED ACTIVITIES BY FUNCTIONS OF MUNICIPALITIES |                                 |                                  |                                        |  |  |
|------------|---------------------------------------------------|---------------------------------|----------------------------------|----------------------------------------|--|--|
|            | INVESTMENT ACTIVITIES                             |                                 | NON-INVESTMENT ACTIVITIES        |                                        |  |  |
|            | Municipality as energy consumer                   | Municipality as energy producer | Municipality as energy regulator | Municipality as a source of motivation |  |  |
| Sector:    |                                                   |                                 |                                  |                                        |  |  |
| Project A: | Measure 1 / Euro                                  | Measure 1 / Euro                | Activity 1 / Euro                | Activity 1 / Euro                      |  |  |
|            | Measure 2 / Euro                                  |                                 | Activity 2 / Euro                |                                        |  |  |
| Project B: | Measure1 / Euro                                   | Measure 1 / Euro                |                                  | Activity 1 / Euro                      |  |  |
|            | Measure 2 / Euro                                  | Measure 2 / Euro                |                                  | Activity 2 / Euro                      |  |  |
|            | Measure 3 / Euro                                  |                                 |                                  |                                        |  |  |



Seoul, 17-18th December

# Thank you very much for your kind attention!



