Minimum Energy Performance Standards: Issues and Cooperation Potentials

Sommai Phon-Amnuaisuk International Institute for Energy Conservation

United Nations Forum on Energy Efficiency and Energy Security for Sustainable Development

KCCI, Seoul, Republic of Korea 18 December 2007

Presentation Outline

- About IIEC
- Minimum Energy Performance Standard (MEPS) and Energy Labeling – Overview
- Designs and Implementation Issues
- International Collaborations on MEPS and Labeling
- Co-operation Potentials

About IIEC

Global Presence with Local Implementation

MEPS & Labeling -Overview

MEPS and Labeling - Global Importance

- Use of energy in buildings, including appliances, equipment, and lighting ~ 40% of total energy consumption
- This contributes ~35% of energy-related CO2 emissions

- Most products that will use energy in buildings in 2020 <u>have not yet been built</u>
- Mandatory Energy Efficiency Standards
 - Remove inefficient products from the workplace

• Energy Labels

- Influence consumer and manufacturer decisions

Source: S&L Guidebook, 2nd Edition

S&L Worldwide Snapshot

Cumulative Number of Countries with S&L Programs in Asia and Worldwide

Typical Steps in Developing S&L

Design and Implementation Issues

Design and Implementation Issues

- Screening of Appliances, Equipment and Lighting Products
- Considerations for specific products in priority
 - Energy Performance Measurement
 - Energy and Non-Energy Criteria
 - Assessment of Economic Impacts
- Compliance and Check Testing

Screening of Energy Using Products

- A broad feasibility study normally serves this requirement
 - International review
 - Prioritize Appliances, Equipment and Lighting Products
 - Testing infrastructure needs assessment
 - Program design

• More detailed studies for specific products in priority to determine:

- Energy performance measurement
- Benchmarking local energy performance profile
- Energy and non-energy criteria
- Economic impacts

Energy Performance Measurement for Lighting Products

• Energy performance measurement

- Measurement of electricity consumption = Input
- Measurement of output \rightarrow Light = Output
- Determination of Energy Performance \rightarrow Output/Input

Issues related to each specific product

- Lamp Lumen per Watt is widely used.
- Ballast International standards available for input/output measurements but for determination of energy performance do not exist
- Interpretation of testing methodologies specified in international testing standards

Case Study – Energy Performance Measurement for Lighting Products

Product	Energy Performance Indicator
Lamp (FL, CFL, HID)	Lumen per watt
Ballast	 BEF – Canada, China, Japan*, Korea*, USA Total Input Power – EEI – Australia/New Zealand, EU, Thailand** Watt loss – Malaysia**
Luminaire	 Light Output Ratio (LOR) – Thailand Lighting Fitting Efficiency Code (LFEC) – UK NEMA LER - USA

Note:

*Japan and Korea use slightly different formula to calculate BEF

**Malaysia and Thailand is considering to propose MEPS for ballast using EEI (harmonized with EU)

Energy and Non-Energy Criteria

- In addition to energy performance criteria, non-energy performance are also important to MEPS and Labeling
 - Lamp lifetime, color rendering index (CRI)
 - Electronic Ballast Electromagnetic Compatibility (EMC)
- How policy makers/program designers choose the right combination of energy and non-energy criteria?
 - International guidelines and best practices are not available.

Example – Energy Performance Criteria

Example – Non-Energy Performance Criteria

Assessment of Economic Impacts of Products in Priority

- Very important helping policy makers to decide the right performance levels that suit the local context.
- Results can also be used to verify actual impacts of MEPS and Labeling following years of implementation
- Though it is important, many countries still implement MEPS and Labeling with only limited understanding on costs and benefits of the programs.

Compliance and Check Testing

- The process is crucial to the program effectiveness.
- However, compliance and check testing in many developing countries are relatively weak, probably due to:
 - Limited Budget
 - Bureaucratic and weak policing process

International Collaborations on MEPS & Labeling

Information Sharing - Global S&L Database

- Internet-based database providing details of MEPS and Labeling programs in more than 80 countries around the World
- Jointly managed by APEC Energy Standards Information System (APEC-ESIS, <u>www.apec-esis.org</u>) and Collaborative Labeling and Appliance Standards Program (CLASP, <u>www.clasponline.org</u>)

apec-esis.org & clasponline.org

Standard Developments

- Ongoing international standard harmonization efforts also provide better guidelines for policy makers and program designers of MEPS and Labeling, including:
 - International CFL Harmonization Initiative
 - New IEC standard for ballast energy performance measurement
 - IEC Environmental Committee is pushing the energy efficiency aspect of products and more IEC standards on energy performance will become available (but it still takes many years)

CFL Harmonization Initiative - CFLi

- Test methods for CFL are very similar (mostly based on IEC).
- So, a great potential for harmonization based around the existing IEC protocols
- However, the existing test methods require considerable interpretation, and this may also introduce variations in results, depending upon the assumptions made by individual laboratories.
- CFLi discussed and developed a new test method for electronic self-ballasted CFLs, and proposed to IEC.

Co-Operation Potentials

Development of Better Standards and Certifications

Comprehensive Testing Methodologies

 International co-operations in development of tools and standards similar to CFLi should be strengthened so that policy makers and program designers in developing and emerging economies can benefit.

- Discussion and negotiation is a part of international standard development process so regional and subregional co-operation are important to development of standards that are applicable to both developed and developing countries.
- One certification, applicable to all e.g. Energy Star in
 - **IT products**

Thank you!

www.iiec.org

