United Nations Forum on Climate Change Mitigation, Fuel Efficiency and Sustainable Urban Transport

Korea Press Center, Seoul, Republic of Korea 16-17 March 2010

Reducing the climate impacts of mobile air conditioning

Comparison of global warming effects among HFC-134a, R-744(CO₂), and HFO-1234yf by TWPG, CWP, and CEWN analyses

Akira Sekiya

National Institute of Advanced Industrial Science and Technology (AIST)

A. Sekiya, United Nations Forum on Climate Change Mitigation, Seoul, March 16-17, 2010

Background and targets							
Climate Change Mitigation is the most important issue for environment. Target (UNFCCC): "stabilization of greenhouse gas concentrations in the atmosphere"							
 Fuel Efficiency and Sustainable Urban Transport ⇒ Wide range of technologies are necessary. Power source, Urban system, ···· ⇒ Need to be analyzed by adequate methods. 							
Mobile Air Conditioning (MAC) High GWP refrigerants have been used, however they have good properties in terms of energy saving.							
	CFC-11	\rightarrow	HFC-134a	\rightarrow	HFO-1234yf	HFC-152a	R-744(CO ₂)
(GWP)	4,750	\rightarrow	1,430	\rightarrow	4	124	1
(energy use) small higher than 134a large							
(status)	phased out due to ODS		in current use		under R&D		under R&D
Comparison of environmental acceptability as refrigerant system is necessary. A. Sekiya, United Nations Forum on Climate Change Mitigation, Seoul, March 16-17, 2010							

MAC System*

Model framework and input assumptions for the evaluation

Car service life : 10 years Car engine type : 1.5L Gasoline 4.3L Gasoline

Refrigerant

- · HFC-134a, CO₂, HFO-1234yf
- HFC-152a (simulated as secondary loop)
- · DP-1 (NA : chemical structure unknown)

Data points : Phoenix, Tokyo, Frankfurt Data : Energy consumption, leakage rate, etc.

Direct emission (refrigerant leaks)

- Leakage from refrigerant production and transportation
- · Regular emissions
- · Irregular emissions
- · Service emissions
- · End-of-life emissions
 - ← recovery rate of the refrigerant after 10-year-usage

Indirect emission (Energy consumption)

- AC system and engine cooling fan operation
- · A/C system manufacturing
- · Refrigerant manufacturing
- · Transportation of each component
- · End-of-life recycling and recovery

*) JAMA, SAE 8th Alternate Refrigerant Systems Symposium, 17-19 July 2007

A. Sekiya, United Nations Forum on Climate Change Mitigation, Seoul, March 16-17, 2010

Feature of CEWN

	GWP ₁₀₀	CEWN		
concept	integrated warming values up to 100 years after the emission	integrated warming values up to equal removal rate from the atmosphere		
evaluation period	100 years	lifetime-dependent		
evaluation amount	long-lived gases : partial eval. short-lived gases : total eval.	equivalent quantity evaluation by unifying the removal rate		
long-term evaluation	impossible due to uncertainty over long-term behavior of CO ₂	longer evaluation is possible within the range where the behavior of CO_2 is clear		
point (years, rates) settings	"100 years" is arbitrary	Higher rates are desirable. Progress of CO_2 research can be reflected.		
relationship with climate impacts	weak	strong		
characteristics of evaluation	one-sided evaluation	sustainability is evaluable		
A. Sekiya, United Nations Forum on Climate Change Mitigation, Seoul, March 16-17, 2010				

CEWN VALUES A. Sekiya, et al., J. Fluorine Chem., <u>131</u> , pp.364-368, 2010						
Common Name	Chemical Formula	Lifetime [years]	CEWN (75)	CEWN (80)	CEWN (82)	GWP ₁₀₀ *
Years until CO ₂ decreases	279	728	1445			
Years until gas X decreases by the given removal rate / Lifetime of gas X			1.39	1.61	1.71	
Carbon dioxide	CO ₂	-	1	1	1	1
Methane	CH₄	12	8.75	4.60	2.79	25
Nitrous oxide	N ₂ O	114	191	100	60.9	298
CFC-11	CCl₃F	45	1993	1048	636	4750
HCFC-22	CHCIF ₂	12	675	355	215	1810
HCFC-141b	CH ₃ CCl ₂ F	9.3	271	143	86.4	725
HFC-32	CH ₂ F ₂	4.9	252	133	80.4	675
HFC-125	CHF ₂ CF ₃	29	1352	711	431	3500
HFC-134a	CH ₂ FCF ₃	14	534	281	170	1430
HFC-152a	CH ₃ CHF ₂	1.4	46.4	24.4	14.8	124
HFO-1234yf	CF ₃ CF=CH ₂	0.03	1.41	0.74	0.45	3.8 **
Nitrogen trifluoride	NF ₃	740	53267	28017	16992	17200
PFC-14	CF₄	50000	1382736	727285	441104	7390
PFC-218	C ₃ F ₈	2600	87502	46024	27914	8830

RF $_{CO2}$ used for the calculation is 1.805×10^{-15} [W m⁻² kg⁻¹]

The coefficients for concentration response function of CO_2 : the same as Shine, Climatic Change, <u>68</u>, pp.281-302, 2005.

*) Quoted from IPCC Climate Change 2007. **) Calculated in the same way of IPCC 2007.

A. Sekiya, United Nations Forum on Climate Change Mitigation, Seoul, March 16-17, 2010

CEWN* and GWP due to the use of car air-conditioning

<u>Summary</u>					
 What is GWP, TWPG, CWP and CEWN ? Evaluation results by TWPG, CWP and CEWN using JAMA's LCCP data 					
GWP	TWPG, CWP, CEWN				
Evaluation results of Compact Car (1.5L Gasoline engine)					
HFC-134a >>> CO₂ >> HFO-1234yf ↔ CO₂ >>> HFC-134a > HFO-1234yf					
Evaluation of future warming					
Not available	<mark>CO₂</mark> >>> HFC-134a [~] HFO-1234yf				
Effects of HFC-134a recovery on total warming					
significant 🔶 very small					
CEWN results agree with those of TWPG, TTPG and CWP.					
Sustainable MAC refrigerant: HFC-134a ≦ HFO-1234yf					
LCCP by GWP shows only one side of global warming. We may lead to serious problems in our future environment if we examine this matter with limited indicators, like GWP only. Let's study the global warming using adequate and diverse evaluation methods.					