

Accelerating Global Adoption of Photovoltaic Technologies

World Green Energy Forum 2010 Gyeongju City Korea

November 17-19, 2010

Dr. Vijay K. Kapur, MBA

President/CEO

E-Mail: vkkapur@isetinc.com

www.isetinc.com

International Solar Electric Technology, Inc. (ISET)

20600 Plummer St. Chatsworth, CA, 91311

Outline

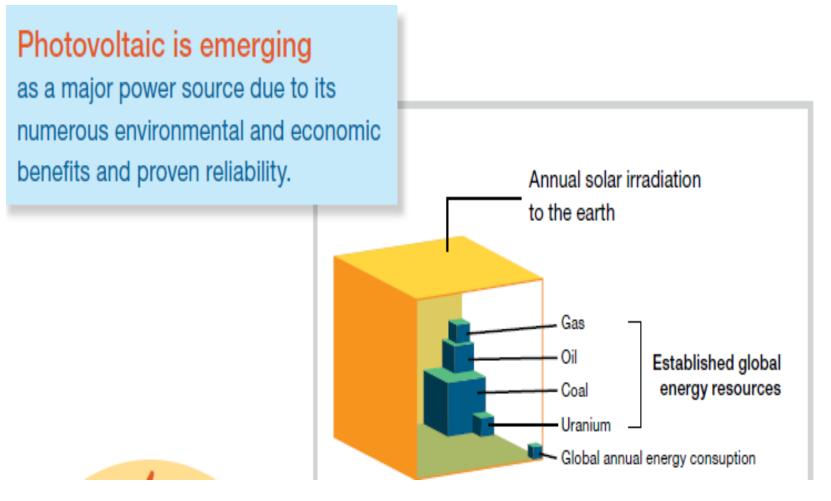
- Introduction to ISET
- Abundance of Solar Energy
- PV Business in the Industrialized World Today
- World Demographics
- Base of the Pyramid
- Potential for PV business in the Rest of the World
- ISET's Technology for Low Cost PV Manufacturing
- A 50 MW/Yr Turnkey System
- Accelerating Global Adoption of PV
- Summary

About ISET

- Founded in 1985 as California (C) Corporation.
- Received over <u>US \$18 Million</u> in R&D Awards for Technology Development:
 - Dept. of Defense, Dept. of Energy, NASA, Dept. of Commerce, California Energy Commission (CEC)
- Patents Issued for Process Technology:
 - USA, China, India, Europe & Japan
- Raised funding through 2 rounds of private placement:
 - June 2006: Series A (US \$7.4M)
 - April 2008: Series B (US \$10.2M)
 - TOTAL: US \$17.6 Million
- Operating in a fully permitted 24000 ft2 building.

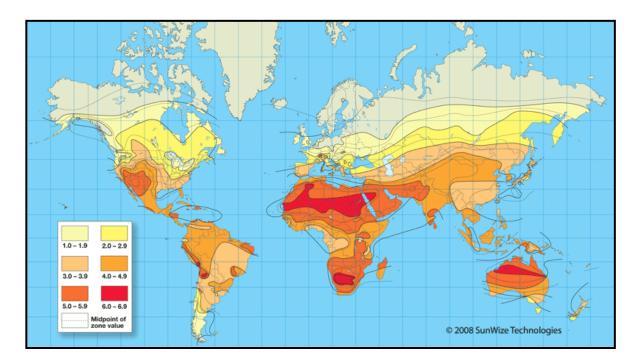
Company History

- Founded in 1985 as California (C) Corporation.
- Received over US \$18 Million in R&D Awards for Technology Development:
 - Dept. of Defense, Dept. of Energy, NASA, Dept. of Commerce, California Energy Commission (CEC)
- Patents Issued for Process Technology:
 - USA
 - China
 - India
 - Europe
 - Japan
- Raised funding through 2 rounds of private placement:
 - June 2006: Series A (US \$7.4M)
 - April 2008: Series B (US \$10.2M)
 - TOTAL: US \$17.6 Million


Availability of Solar Energy

- 1 Terawatt (TW) = 1 Trillion Watts
- 2005 US Daily power consumption: 3.35 TW
- 2005 World's Daily Power Consumption: 15.8 TW
- Daily Incident Power on Planet Earth: 174,000 TW

Planet Earth receives energy from the Sun equal to it's annual Energy Usage every 40 minutes.



Comparative Abundance of Solar Energy

Availability of Solar Energy

- Annual Average Incident Solar Radiation (Hours of Peak Sunshine per Day)
- Abundant Sunshine in Developing Nations:
 - Africa, Asia, Middle East, South America, Central America, Oceania
- Very Large Untapped Market Potential for Low-Cost Photovoltaics.

In the Industrialized World

Photovoltaic Business Outlook in the Industrialized World

- 2009 worldwide sales: US \$38 billion
- 40+% annual growth since 1997.
- 2020 projected sales volume: ><u>US \$100 billion</u>

 $\rightarrow \rightarrow \rightarrow$

- *Global deployment in 2009:* > 7.5Gigawatts.
- Growing worldwide demand for renewable energy.
- Government support for solar energy in:
 - Germany, France, Italy, UK, Spain, Portugal, Greece, USA, Canada, China, India and others.

Cost Driver in Industrialized countries - Grid Parity

Price (With No Subsidy) of Residential Grid connected PV Systems								
Annual Output: 1700 KWh/kW	\$5000/kW	\$4000/kW	3000/kW	\$2500/kW	\$2000/kW			
Net Monthly Loan Payr	nent							
Term: 25 years 29.74 23.79 17.84 14.87 11.90 Tax Rate: 30% 29.74 23.79 17.84 14.87 11.90								
Monthly Savings From	PV Generated	d Electricity						
Utility Rate - \$ 0.12 /kWh	20.40	20.40	20.40	20.40	20.40			
Utility Rate - \$ 0.15 /kWh	21.25	21.25	21.25	21.25	21.25			
Utility Rate - \$ 0.20 /kWh	28.33	28.33	28.33	28.33	28.33			
		Target Installed Price for	Grid -Parity	\$2.00 - \$3.00	Per Watt			

Grid-Connected Systems

- Critical Factors:
 - Grid-Connected systems currently rely on government subsidies.
 - Market pressure to *reduce total installed system price*.

Components	Current Price/Watt	Target Price/Watt
PV Module:	\$1.50 - \$2.25	\$1.00 - \$1.25
Inverter:	\$0.35 - \$0.65	\$0.25 - \$0.30
Installation & Materials:	\$2.00 - \$3.00	\$1.00 - \$1.50
TOTAL:	\$3.85 – \$5.95	\$2.25 - \$3.05

Grid Parity is expected to achieved between 3-5 Yrs.

Market Projections for the Industrialized World

Regional distribution

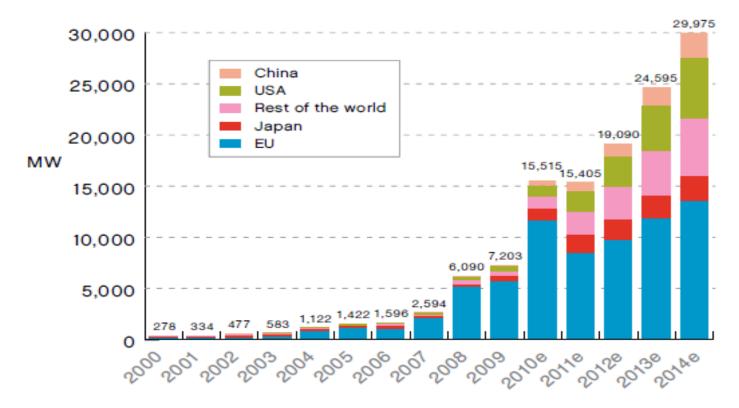
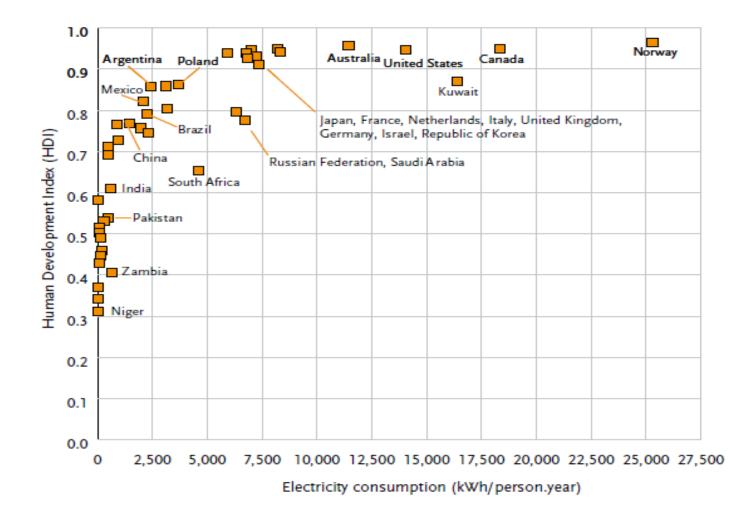
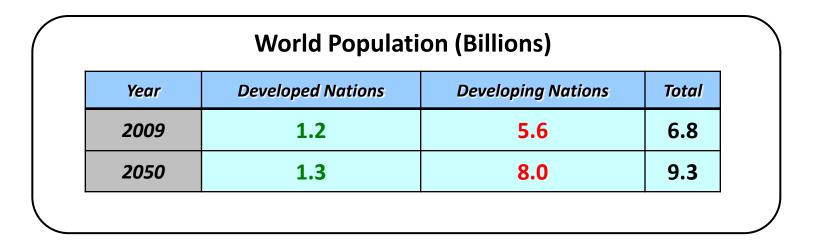


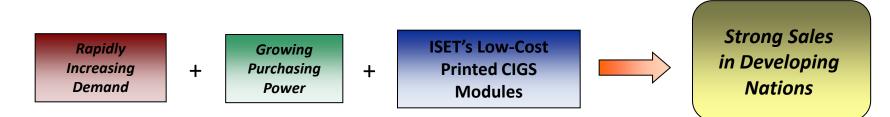
Figure 5 - Regional PV distribution in the World (Policy-Driven scenario)



World Demographics

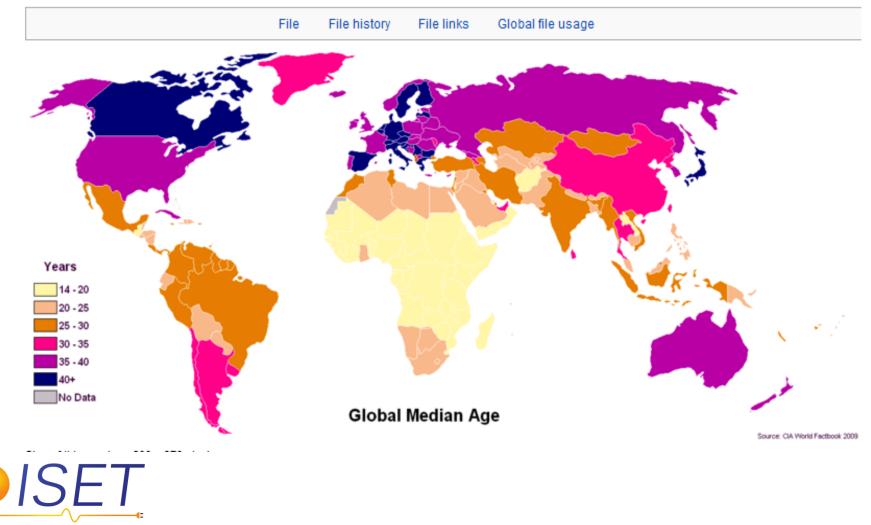
Projected Changes and Trends


Electricity Consumption Vs. HDI



World Demographics

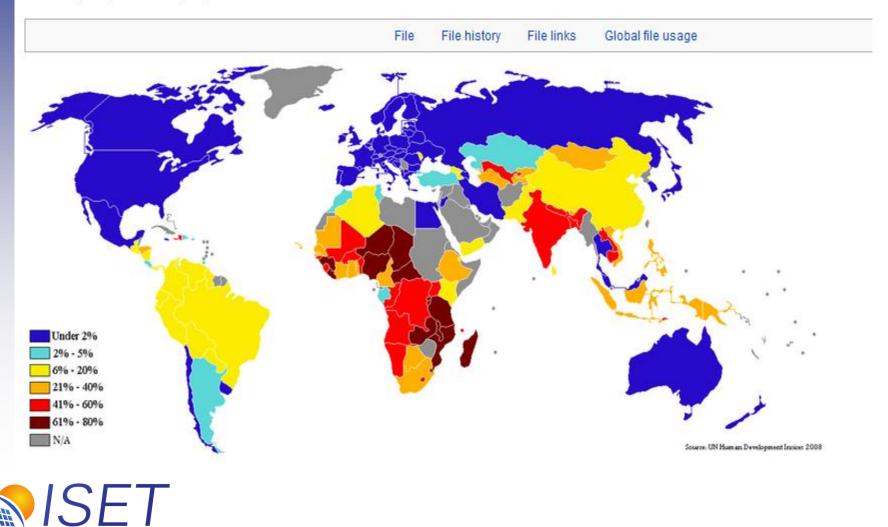
• Near-term planning must include strong strategy for sales to Developing Countries.



Demographics – Age Distribution

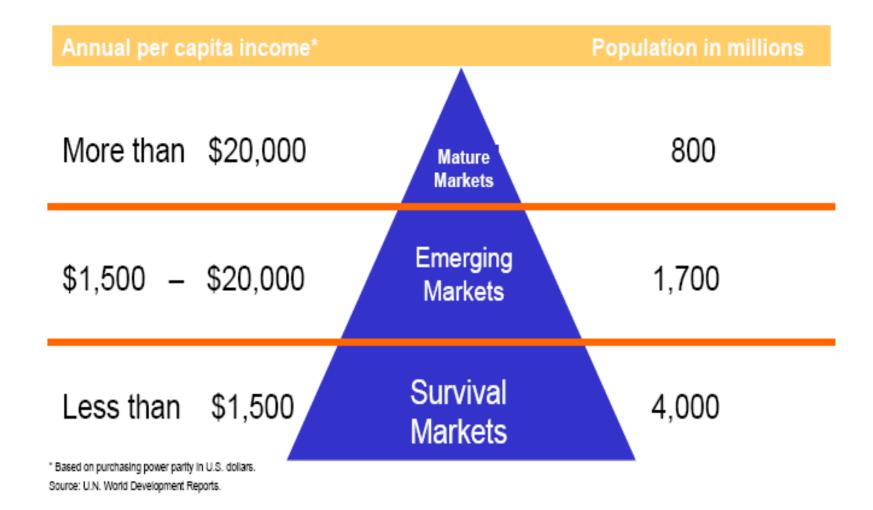
File:Median age.png

From Wikipedia, the free encyclopedia


٢

International Solar ElectricTechnology

Limited Buying Power of World's Population


File:Percentage population living on less than 1 dollar day 2007-2008.png

From Wikipedia, the free encyclopedia

International Solar ElectricTechnology

Population Vs. Per Capita Income

People without Access to Electricity

Today :

1.6 billion people don't have access to electricity

And 2 billion people forced to rely on traditional biomass sources due to the lack of clean and safe cooking fuels

4

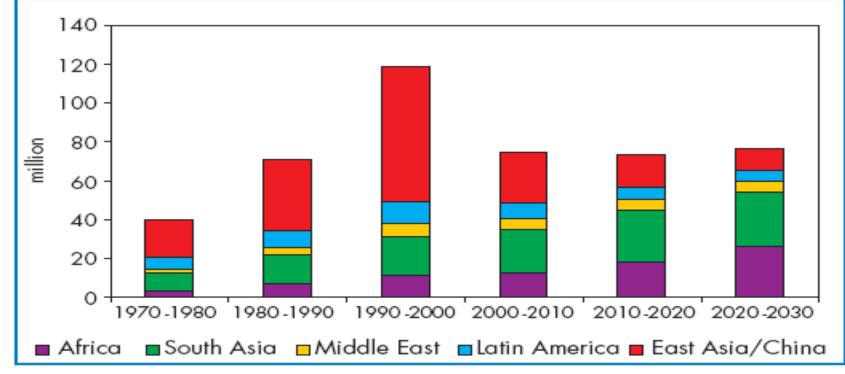
Schnelder Electric: WFES 2010 Abu Dhabl - 20 January 2010

People with No Access to Electricity

1.6 billion people

are heavily impacted by lack of access to electricity

The lack of electricity


- endangers peoples' health
- puts a strong brake on development
- increases environmental damages
- Slum inhabitants (1bn people increasing by 500,000 per week) connect to the grid in poor conditions because of their situation
- Access to electricity is intrinsically hard, they pay more and they get a poorer service
- Remote villages must be focused to develop the people, the agriculture and to reduce slump growth.

Schneider Electric: WFES 2010 Abu Dhabi - 20 January 2010

People Gaining Access to Electricity

Figure 13.9: Annual Average Number of People Gaining Access to Electricity

Source: IEA analysis.

Continued Challenge

In 20 years' time: 1.5bn more people will access to electricity but there will be still 1.4bn without access

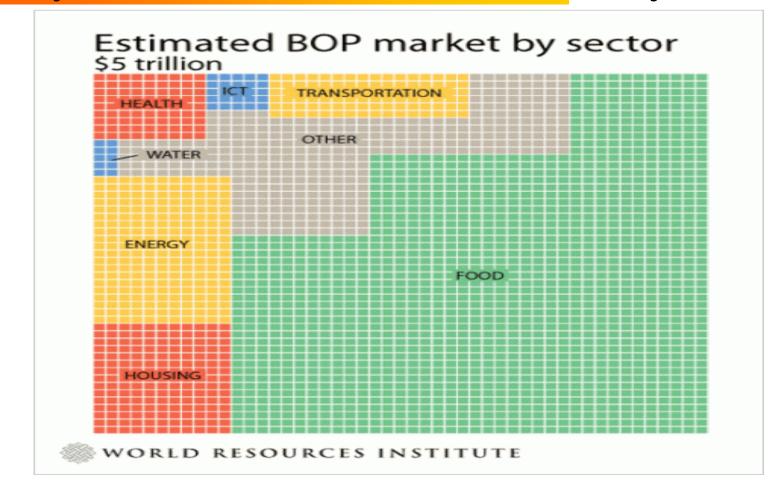
6

584

798

693

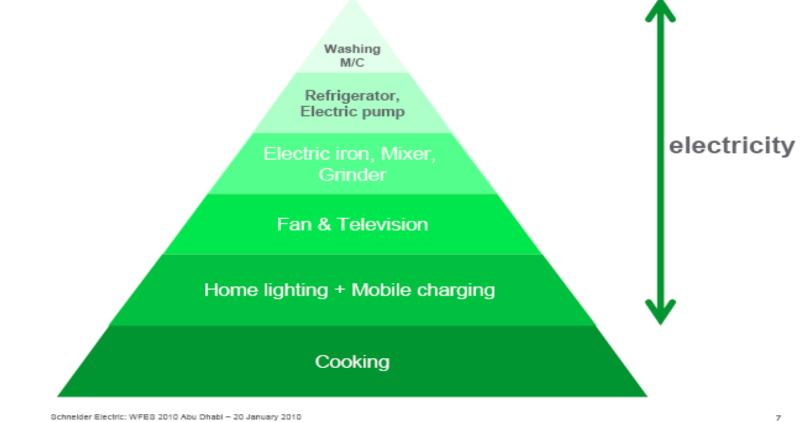
2008: 4 billion people with electricity, 1.6 billion people without 2030: 5.5 billion people with electricity, 1.4 billion people without


Dominister Electric: WFEB 2010 Adus Cittadal - 20 January 2010

40

(21)

Projected Market Volumes at Base of the Pyramid


Affordable PV products can serve all of the above mentioned sectors

Needs of BOP People

BoP hierarchy of needs

Electricity is the #1 response outside cooking fuel

Schneider Electric: WFES 2010 Abu Dhabi - 20 January 2010

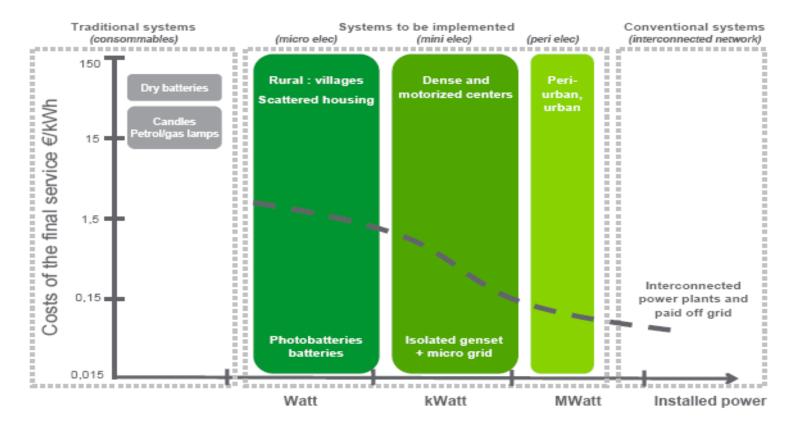
Market Overview – Developing World

Critical Factors:

- Intense Demand for Energy.
- Unreliable or Unavailable Power Infrastructure.
- Areas of highest population developing world have an <u>abundant supply of annual</u> <u>sunshine</u>.

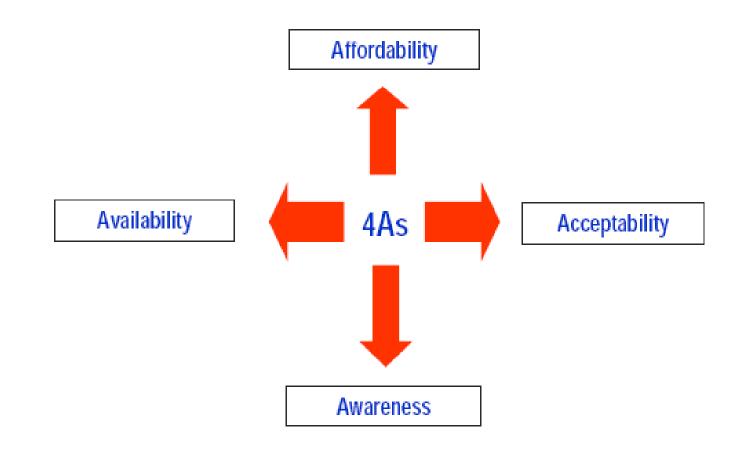
• Critical Power Needs:

- Battery Charging
 - LED Lanterns
 - Cellular Phones
- Water Pumping
- Rural Electrification
- Medical Supply Refrigeration


• Primary Competition:

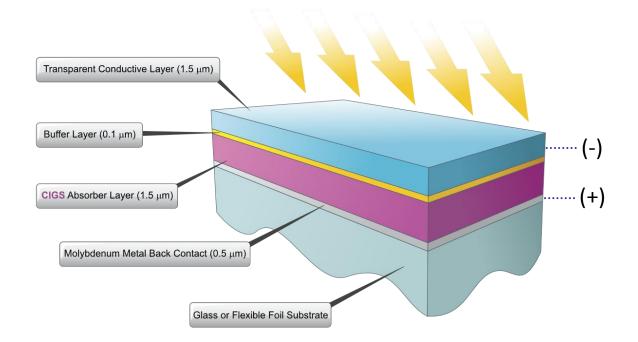
- Diesel Generators
- Kerosene Fuel
- Disposable Batteries
- *<u>High Market Price Tolerance</u>* for low-wattage **portable** and **remote** PV applications.

High Price Usage for Very Low Usage of Electricity


Why pay 100x more for 100x less energy?

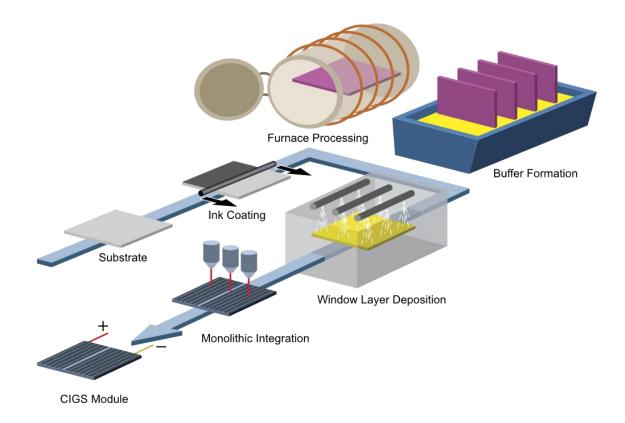
Schnelder Electric: WFES 2010 Abu Dhabl - 20 January 2010

Introduction of PV Products in the Developing Countries

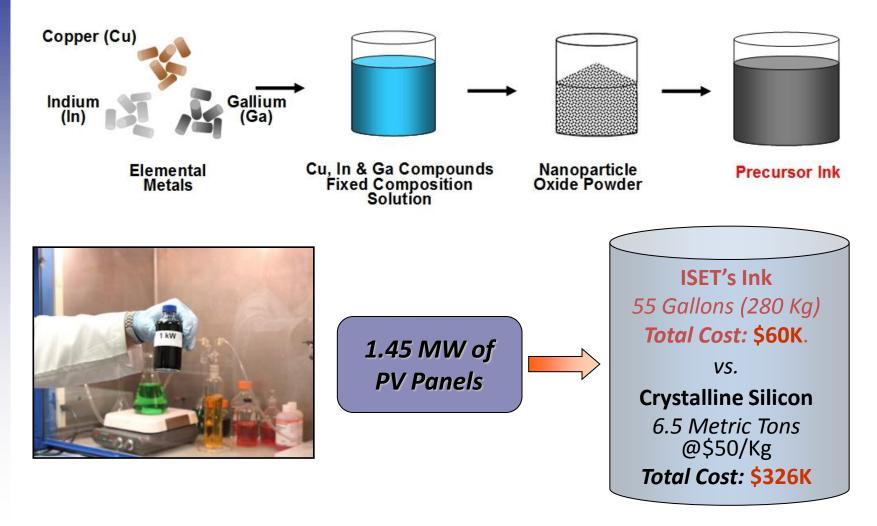


Providing Access to Electricity in Developing Countries

ISET's Technology for Manufacturing Affordable and Customized CIGS modules

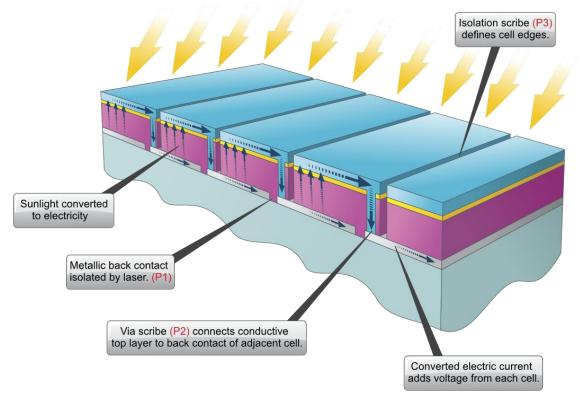

ISET's Cell Structure

*Active device thickness approximately 1/15th the diameter of a human hair.


ISET's Complete CIGS Process

• H2O-based inks printed onto rigid or flexible substrates.

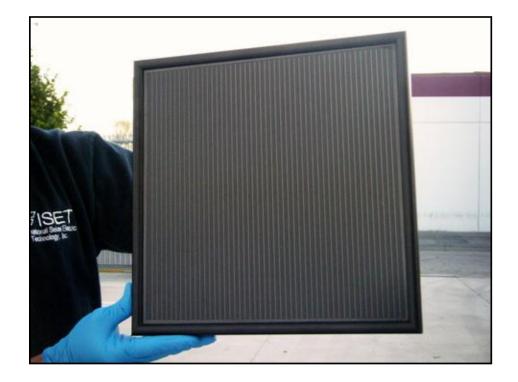
ISET's CIGS Nanoparticle Ink



ISET's Integrated Module Structure

• Monolithic Integration:

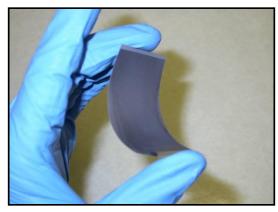
- Creates many interconnected cells on a single substrate.
- Cell patterning may be optimized for best power output.



ISET's Integrated Module Structure

Benefits

- No wiring together of individual cells, saves assembly costs.
- Fine pattern lines maximizes collection area, increasing power output.
- Voltage output adjusted by changing # of cells in pattern.
- Same function for large utility power panels as well as for small handheld battery chargers.



Product Configurations

Customized Printed PV Modules

Flexible Printed Solar Cell

Module Prototype - 30cm x 30 cm

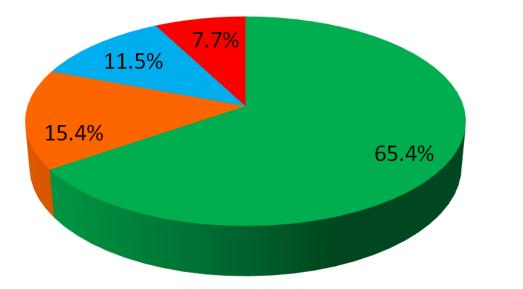
Product Configurations

ISET Competitive Advantage

- Simple and Elegant Technology.
- High Materials' Utilization:
 - Greater than 95% of Active Materials in Ink are used.
- Low CapEx:
 - Less than \$1.00/Watt for 50 MW production capacity.
- Very Low Cost of Production.
- Versatility:
 - Compatible with both Rigid and Flexible modules.
 - Grid-Connected Power and Portable Applications.
- Mixed Market Approach offers high profit margins.
- Simplicity allows technology deployment in regions of market growth in Developing Countries.

N	lanufactur			
		Pilot Plant	Full Production	Mass Production
	Timeline	2010	2011-2012	2012-Beyond
	Capacity	3.0 MW	30-50 MW	100-200 MW
	Products	Portable Modules; Customized Solar Products	Portable and Power Modules	Portable and Power Modules
	Customers	N/A	Residential & Commercial Rooftop Installers; Utilities, OEM's of Off Grid Products	Solar Farms; Utilities; All Markets
	Development Plan	Streamline Manufacturing Process	Revenue Generation	Global Expansion of Low- Cost PV
	Target Manufacturing Cost per Watt	N/A	\$0.70	\$0.65-\$0.50

Manufacturing Cost Estimates


Estimated Manufacturing Costs at 50 MW/yr Capacity

Direct Materials Costs	Cost (\$/m²)
Active Device Materials	\$15.00
Lamination and Sealant Materials	\$20.00
Frames, Junction Box	\$7.50
Total Materials Cost:	\$42.50
Direct Labor with Fringes	\$5.00
Capital Equipment Depreciation (St. Line 7 yrs.)	\$10.00
Factory Overhead & Management	\$7.50
TOTAL ESTIMATED COST per m ² :	\$65 .00

- Output at 10% Module Conversion Efficiency: 100 Watts / M²
- Resultant Estimated Cost: <u>\$0.65 / Watt</u>

Manufacturing Cost Estimates

- Output at 10% Module Conversion Efficiency: <u>100 Watts / M²</u>
- Resultant Estimated Cost: <u>\$0.65 / Watt</u>

CIGS Module Production Plant Requirements

Requirements	50 MW/Yr Turnkey Line	250 MW/YR Cluster System	
Capital, \$ Million	\$55-60	175 - 200	
Factory Area , Sq. Feet	40,000 -45,000	200,000 – 250,000	
Number of Direct Employees	130 -150	600 - 700	
Projected Cost of Manufacturing \$/Watt	0.65 -\$0.70	0.55 – 0.60	
Time for Factory Operation, Months	12 -18	24 - 30	

ISET's 'Ink Based ' Technology is affordable and can be made readily deployable in various global markets

ISET's Plans for Manufacturing

- Develop 50MW/YR 'Turn-Key' production line
 - Complete Supply Chain
 - Rapidly-Deployable
- Install a 50MW/Yr solar panel manufacturing line in ISET's current facility
- Manufacturing of PV Products
 - Grid-connected applications (USA)
 - Customized panels for exports to emerging markets in developing countries
- International Business Growth
 - Technology Licensing
 - Sales of 'Turn-Key' production lines

Marketing Plan

• Grid Connected Systems in the U.S.:

- Collaborate with local utilities and Real Estate Developers for solar installations
- Partner with PV system developers offering complete solar solutions.

• Portable and Remote Power PV Applications:

- Collaboration with PV systems developer and distributors in India other developing countries.
- Establishing connections within the consumer electronics industry.
- Dissemination of Low Cost PV Manufacturing via Technology Licensing
 - Joint Venture partnerships with established companies in countries with market potential.

Population and Watts per Capita

Population in Millions	>1000	>100	100 – 30	30 – 10	10 – 1	<1
No. of Countries	2	9	27	45	72	68

Watts per Capita	>1000	1000 - 750	750 – 500	500 – 250	250 – 100	100- 50	<50
No. of Countries	14	11	20	24	43	24	55

Global Average Watts per Capita = 297 watts

Energy Availability Gains provided by 250 MW/YR Cluster

Country	Population Millions	Current Usage KWH/Capita	KWH/Capita Gain in 5 years	Change (%)
El Salvador	6.88	768	218	28.4
Bhutan	2.16	1922	644	36.1
Angola	15.9	214	94.3	44
Nepal	27.1	93.5	55.3	59.1
Laos	5.9	284	254	89.4
Cote d'Ivoire	18.2	90.7	82.6	91.2
Cambodia	14	81	107	132
Fiji	0.85	1010	1769	175
Burkina Faso	13.2	42.7	114	266
Eritrea	4.4	55.7	341	612

Accelerating PV Growth

- Install *affordable* 250 MW/Yr manufacturing clusters
 - countries with population ~ 10 million
 - replicate 50 MW/Yr turnkey lines
- Promote a sense of *availability* of low cost energy
- Improve *quality of life*, productivity resulting in *economic growth*
- Train *local talent* in manufacturing, product design and technical support.
- Encourage communities to adopt PV generators
 - Agriculture
 - clean water
 - Telecommunication
 - Education
 - Medical Facilities
 - transportation fields.
- Create *awareness and acceptability* of PV generators in the local social structure

ISET's 'Ink Based' technology for manufacturing low cost, affordable, flexible PV modules can be a catalyst for global adoption of PV technology in the near future.

International Solar ElectricTechnology

THANK YOU FOR YOUR ATTENTION

20600 Plummer St. Chatsworth, California, USA 91311 www.isetinc.com