결정계 Poly-Si/Wafer 및 CIGS 태양전지 기술동향

2010.12.10

삼성전자 LCD 사업부 광에너지사업팀 박성찬 수석

SAMSUNG

- 신·재생에너지 (New · Renewable Energy) : 화석 연료나 핵분열이 아닌 대체 에너지의 일부로 신 에너지와 재생 에너지를 통틀어 부르는 말
 - 신에너지(New E.) : 새로운 물리력, 새로운 물질을 기반으로 하는 에너지
 - 재생에너지(Renewable E.): 재생가능한 에너지

Bio Fuel

Hydro Power

Solar Cell

Geo Thermal

Wave Power

Wind Power

그 밖에 Biomass, Tidal power, Hydrogen Energy, Fuel Cell

태양전지 구동 원리

■ 단결정 및 다결정 기판, p/n Junction, 반사방지막, 상/하부 전극으로 구성됨

We are ONE!

■ 반도체에 빛을 쪼이면 자유전자 생성 → p-n접합의 전기장의 영향으로 n-형

쪽으로 끌려 넘어가 전극을 통해 외부 부하로 흘러가는 전류를 형성

종류	장점	단점
태양광	무공해, 무제한 청정에너지원 필요한 장소에서 필요량 발전가능 유지보수가 용이, 무인화 가능 긴 수명(20년 이상)	에너지밀도가 낮아 큰 설치면적 필요 전력생산량이 지역별 일사량에 의존 설치장소가 한정적, 시스템 비용이 고가 초기투자비와 발전단가 높음
태양열	무공해, 무제한 청정에너지원 화석에너지에 비해 지역적 편중이 적음 다양한 적용 및 이용성, 저가의 유지보수비	에너지 밀도가 낮고, 간헐적임 초기 설치비용이 많음 봄, 여름은 일사량 조건이 좋으나 겨울철에는 불리함
풍력	무공해, 무제한 청정에너지원	기상, 지역조건 영향 큼. 초기 설치비가 비싸다. 유지보수 / 소음 / 설치 시 어려움
지열	발전비용이 비교적 저렴하다	적격지가 한정 / 지중상황파악 곤란 우리나라는 적격지가 드물다
바이오매스	풍부한 자원과 큰 파급효과 / 환경 친화적 생산시 스템 환경오염의 저감 (온실가스 등) / 생성에너 지의 형태가 다양 (연료, 전력, 천연화학물 등)	자원의 산재 (수집, 수송 불편) / 다양한 자원에 따른 이 용 기술의 다양성과 개발의 어려움 / 과도 이용시 환경파 괴 가능성 / 단위 공정의 대규모 설비투자
연료전지	에너지 효율이 높다 공해가 거의 없거나 매우 적다	단위 부피당 수소저장밀도가 낮다. 안전사고 위험. 수소를 만들기 위해 다른 에너지 필요
폐기물	비교적 단기간 내에 상용화 가능 폐기물의 청정 처리 및 자원으로의 재활용 효과	CO2발생 / 사용 후 고열, 쓰레기 발생 한국 신재생에너지 보급비율인 2.4%중에 74.8% 차지 (생색내기용으로 볼 수 있음)

<u>PV 산업 규모</u>

□ 태양광 산업의 총 부가가치는 년간 \$26.1B, 모듈은 \$11.9B규모

- 결정계 \$20.9B, 박막계 \$5.2B로서 박막계 비중은 약 20%
- 태양전지(모듈) 시장 규모는 결정계 \$9.5B, 박막계 \$2.4B

[Si 결정계 Value Chain]

□ 보수적 전망 기준으로,

現, 모듈 시장 규모의 65~70%는 소재 시장이며, 지속적인 성장 예상

태양전지 원가 구조

□ 결정계 태양전지 시스템價의 31%는 Wafer 가격에 기인함.

실생전자 Source: Green Tech Media (GTM '09/05)

결정계 태양전지 Supply Chain

폴리실리콘의 수급 불균형 가능성 高

: 전체 supply chain의 수직계열화를 진행중인 업체 多

폴리실리콘 제조 : 지멘스/FBR

□ 고순도 (>9N) 폴리실리콘 제조 공법: 지멘스, 유동층(FBR) 석출 공법

We are ONE!

<u> 폴리실리콘 제조 : UMG-Si</u>

- □ > 6N의 Solar Grade 폴리실리콘 제조원가 감소를 위해 UMG-Si개발
 → 기상 석출이 아닌 MG-Si로부터 고순도화
- □ UMG Si의 요구 조건: P < 5ppm, B < 1ppm 및 금속 불순문 제거 필수

→ <u>정련</u> 공정상 Boron, Phosphorus의 제거 어려움

기판 제조 기술: 잉곳/Slicing

□ 대형화에 의한 원가 절감 추구 및 품질 향상 추구

- → 원가 절감: 기판 size 증가, Kerf loss 감소(Ribbon) 및 박형화(sawing), 원재료 절감 (UMG-Si)
- → 품질 개선: LID 감소 (Ga, M-Cz, High resistivity), 두께 산포 개선, 웨이퍼 표면 평탄도 개선 (sawing)

웨이퍼 품질

Wafer 품질 : Lifetime, Uniformity Wafer 품질에 따른 최적 구조/공정 有

SAMSUNG 삼성전자

<u>웨이퍼 품질: Lifetime</u>

□ 변환효율과 직접 연관이 있는 품질 핵심 요소는 Lifetime

→ Lifetime에 영향을 주는 인자는 소재(p-Si)부터 웨이퍼 형성 전체 공정에 대한 순도/결함 관리 중요

$1/\tau_{meas} = 1/\tau_{bulk} + 1/\tau_{surface} + 1/\tau_{auger} + 1/\tau_{rad}$					
변환효율 vs. Lifetime (순도)	공정 단계	원재료 물성 및 공정 인자	공정 모식도		
20 19 Poly purity	폴리 실리콘	- 금속 오염 (Fe, Cu, Al, Cr, Ti, Ni, W, Mo) - B, P 순도 - 9N 이상 품질 검증 필요 (단결정) 6N 이상 (다결정)	Code and an		
Efficiency 17 16 P-multi screen print 1000ppba 100ppba 100ppba 100ppba 100ppba 100ppba 100ppba	잉곳 성장	- Crucible로부터 산소/탄소 농도 제어 - 결정성장 결함 (Slip, Disl.) - Dopant 농도 gradient (비저항) - 금속 precipitate - 금속 오염	Cyrea (b, the effective (b)) Seed (b)		
14 + + + + + + + + + + + + + + + + + + +	Slicing	- Wire sawing으로부터 오염 (Cu, Fe, Zn, Al, Mn, etc) - Sawing damage - Saw mark - Slurry에 의한 오염			
AMSUNG	15				

<u>웨이퍼 품질: LID</u>

□ LID 현상은 Boron (P형 기판)과 Oxygen 농도에 의존 (B-O complex형성)

→ B-O complex는 e-h pair trap으로 작용하여 광상태하의 lifetime 감소: 단결정 P-type 열화 大

→ Lifetim 감소는 효율 저하 유발하며, 200°C 열처리 후 lifetime 복원 (B-O 분해)

해결책

- 1. <u>Doping source 변경</u>: Boron에서 Ga으로 변경 (Ga의 편석 계수로부터 수율 drop가능성 있으나, 대량 생산 가능성 大)
- 2. Boron 농도 감소: Boron이 적은 비저항 3~6 ohm cm적용
- 3. Oxygen 농도 감소: Magnetically grown Cz 공법 적용시, Oxygen 농도 8~10 ppma 가능하며 LID 최소화 가능
- 4. 광상태下에서 후속 <u>열처리</u> (200°C annealing + illumination, 부가 process) → 효율 복원

결정계 SP 태양전지 기본 구조 및 공정

■ 단결정 및 다결정 기판 사용

■ 저가화를 위하여 Screen Printing 전극 공정 적용

We are ONE!

결정계 태양전지 효율 History

■ 고효율을 위한 기본 방향 : 광학적 손실 감소 → 전극폭 감소, 반사 제어 (Texturing) 전기적 손실 감소 → 재결합 감소(도핑), 저저항 전극

19

SP 기반 고효율 결정계 태양전지

[多결정 SP전지]

삼성전자

SAMSUNG

[單결정 SP전지]

■ Screen Printing Cell : 양면 전극 사용 → Shadowing loss 有, Defect에 둔감 → Low quality 기판(p type) 사용 可

We are ONE!

20

Back Contact

[Pluto전지]

[SP전지]

고효율 결정계 태양전지

■ HIT 및 BC 태양전지 : High quality n-type wafer 사용

- HIT : Intrinsic a-Si passivation에 의한 高 Voc → 고온 출력 안정성 大
- BC : No metal contact on the front → Shadowing loss 無

HIT 태양전지

□ 특징 : 단결정 n형 Si wafer에 PECVD a-Si, TCO 증착

기술을 적용한 이종접합 태양 전지

□ 현황 : R&D 최고 cell 효율 23.0%, 양산 cell 효율

19% 이상, 양산 모듈 효율 17% 이상

□ 구조 : 단결정 n형 Si wafer에 a-Si/TCO/Ag전극

BC 태양전지

□ 특징 : 단결정 n형 Si wafer에 BSG/PSG를 이용한

Junction형성, 전해 도금을 적용한 전극 형성

□ 현황 : R&D 최고 cell 효율 23.4%, 양산 cell 효율

20% 이상, 양산 모듈 효율 18% 이상

□ 구조 : 단결정 n형 Si wafer에 전면 AR층, 후면에

p, n 층을 모두 형성한 shading loss zero 구조

CIGS 태양전지 소개

- □ 광흡수층으로 I-III-VI 족 재료인 Cu-(In,Ga)-Se2 박막을 사용
- □ Direct band gap으로 태양전지 재료 중 광흡수 계수가 큼(1x10⁵ cm⁻¹)
 - → 얇은 두께로 고효율 태양전지 구현 가능
- □ R&D 효율 20.7% 및 양산 효율 13% 수준.

제조 공정

❑ PVD 방식을 적용하여 Mo와 n-ZnO(하부 및 상부 전극) 형성 ❑ Co-evaporation(Sputter) 및 Se化 방식을 적용하여 CIGS 박막 형성

핵심 공정

핵심 공정 : CIGS 흡수층 형성

□ CIGS 태양전지 효율의 key layer

□ 각 원소별 조성비 제어 및 단일 phase 형성이 중요함

기술개발 동향

We are ONE!

- □ 단일 phase 형성이 고효율 달성을 위해 중요
- □ Cu/(Ga+In) 조성비 제어가 고효율 달성을 위한 중요 인자
- 표면 및 grain boundary에서의 defect 최소화
 : Large grain 필수
- □ 대면적 고효율화(장비 issues)
 - : 전 면적 조성비 균일성 확보
 - : 결정화에 필요한 온도 균일성
 - : Se 공급 균일화(gas flow 등)
 - : 대면적에 균일한 Na 공급 문제
- CIGS/Buffer 계면특성 향상
 : FF 및 Voc 향상의 주요 요소

【조성 control 문제】

[효율 편차에 의한 효율 저하]

업계 동향

□ CIGS 태양전지 셀 최고 효율 20.3%(다결정 Si과 동등 수준)

- ZSW(獨, 태양전지 연구기관)에서 2010.08월 발표* (2010.09月, 25th EU PVSEC, Valencia, Spain)
- 모듈 효율 16.29%(30×30 ㎡) 최고 효율 발표(SF社(日), 2010.09月, 25th EU PVSEC, Valencia, Spain)

□ 자본력 있는 대기업의 본격 사업 진출 초기

- 소규모 회사에 대기업 자본 투자 증가, 09~10년

회사	Сара.	최근 동향
Solar Frontier (Showa Shell)	1GW('11)	- '10년 04월 출범, Showa Shell 100% 지분*
Saint-Gobain (Avancis-HHI)	100MW('12.1Q, Torgau(獨)) 200MW('12.2Q, HHI)	- Saint-Gobain JV 협력 체결* - '15. 400MW 증산 계획 발표
TSMC (Stion)	200MW('12)	- 2 phase 700MW 증산 계획*
Q-cells (Solibro)	135MW('10)	-'06년 JV설립(Q-cells-Solibro AB) (Solibro product presentation, 2009. 08)

* 출처 : www.pv-tech.org

감사합니다