

Sustainable Development and Low Emission Development Strategies

Bertrand Magné
OECD Environment Directorate

International Conference in Commemoration of the 25th Anniversary of Korea Energy Economics Institute **Green Growth and Climate Change Negotiations: Now and Future** Seoul, September 6th, 2011

Presentation Outline

• Link between Green Growth and low carbon development

- OECD/IEA vision of Low-Emission Development Strategies
 - ⇒ The Institutional Framework
- Illustration of low-carbon emissions pathways
 - ⇒ Preliminary results from forthcoming OECD Environmental Outlook to 2050

Green growth

- Low-carbon development is closely linked to green growth
- The OECD Green Growth Strategy, delivered at the 2011 OECD Ministerial Council Meeting (MCM), supports national and international efforts to achieve green growth
- Green growth aims to help countries foster economic growth and development while ensuring that natural assets continue to provide the resources and environmental services on which our well-being relies
- Green growth develops a flexible policy framework that can be tailored to different national circumstances and stages of development.

Green growth and energy

Challenges

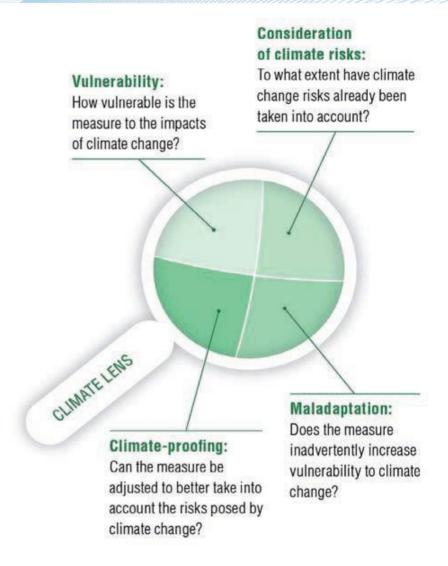
- Change is required due to countries being locked into polluting and greenhouse gas emitting energy sources
- Fossil fuel dominate energy supply and innovation in cleaner technologies will take time

Opportunities

 Clean energy growth enables opportunities for new green industries, jobs and technologies, while managing the structural changes associated with the transition to a low-carbon economy

Current energy trends

 Unsustainable to achieve a low-carbon growth due to rising energy demand in coal-based economies and increased coal-fired power generation in response to higher oil and natural gas prices.



Integrating climate change into development co-operation

Integrating climate change in development co-operation can help developing countries

- Deal with climate risks and become more resilient to climate change
- Develop on a low-carbon path
- Innovate or adopt cleaner technologies to reduce present and future GHG emissions

Source: OECD (2009), Integrating Climate Change Adaptation into Development Co-operation: Policy Guidance

LEDS planning cycle and lessons learned

1. Formulating goals

Align development and climate change goals
Build on past reports and strategies
Analyse appropriate and reliable data

5. Monitoring

Track progress towards goals

Learn from experience
Update and improve LEDS

Clear leadership

Stakeholder consultation

2. Institutional framework

Clearly define roles
Interministerial participation
Coordinate stakeholder
consultation

4. Implementation

Identify sources of finance Coordinate funding disbursement

Implement policies

3. Prioritising policies

Identify & address implementation barriers

Consider policy synergies and tradeoffs

Consider policy interactions across sectors

Potential benefits and challenges

Benefits

- Policy integration
- Coordination
- Communication
- Early signals for private sector
- Global emissions trajectory
- Financing needs

Challenges

- Agreement across government
- Data issues
- Barriers to implementation
- Capacity

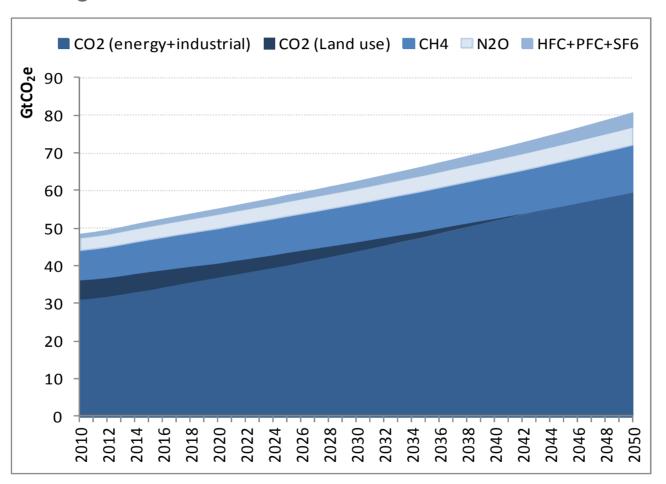
© danielschoenen / Fotolia.com

LEDS Summary

- LEDS provides added-value for domestic and international stakeholders
- Support is needed to address challenges in LEDS preparation
- Preparing a LEDS should not slow down NAMA implementation
- LEDS should not be a pre-condition for financing

Contrasted trends on recent decoupling between GDP growth and GHG emissions

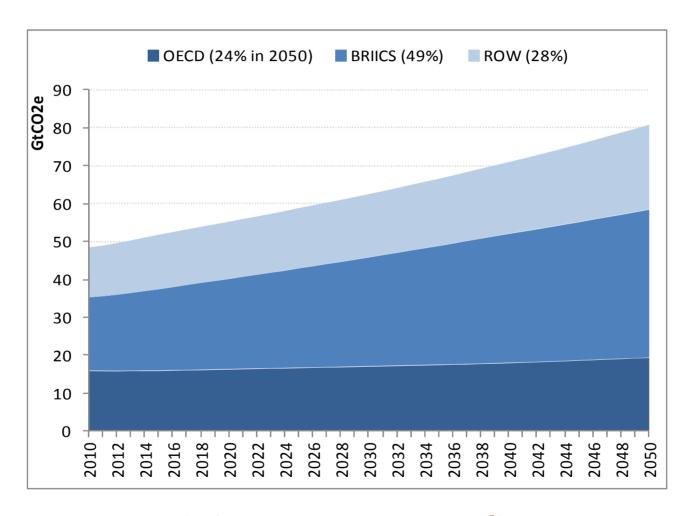
Change in production- and demand-based CO2 emissions


Average annual rate of change, 1995-2005 Trade balance (production - consumption) in CO2 emissions as % of global CO2 emissions 5% 10% ■OECD ■BRIICS BRIICS OECD 4% 7.0% 5% 5.2% 3.8% 5.0% 3% 3.3% 0% 2% -4.9% -6.1% 1.6% -5% 1% -7.3% 1.1% 0% -10% Production-based CO2 Demand-based CO2 1995 2000 2005

Demand-based measures reflect direct and indirect emission contents in final demand, but the link with policy is more complex than with production-based accounting.

GHG emissions by gas - Baseline

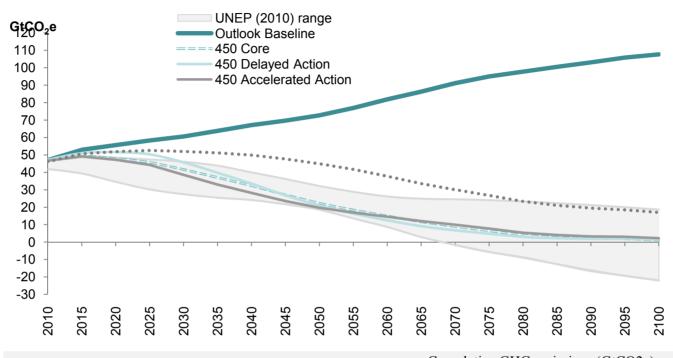
Insights from OECD Environmental Outlook to 2050



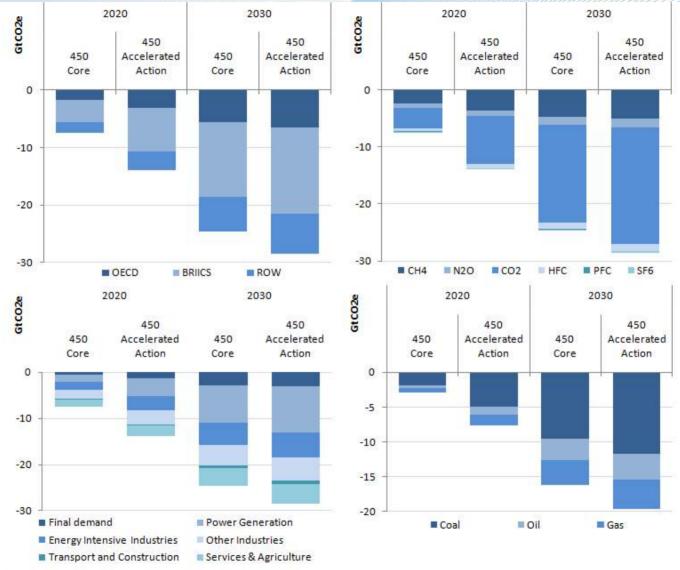
CO2 emissions are projected to remain the largest contributor to global GHG emissions.

Global average temperature would likely reach 3.6-5.6°C.

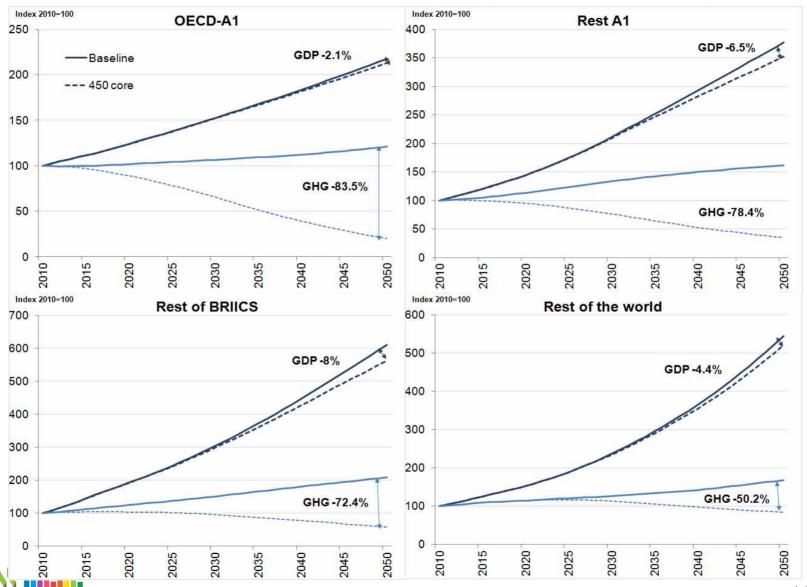
GHG emissions by country - Baseline


Insights from OECD Environmental Outlook to 2050

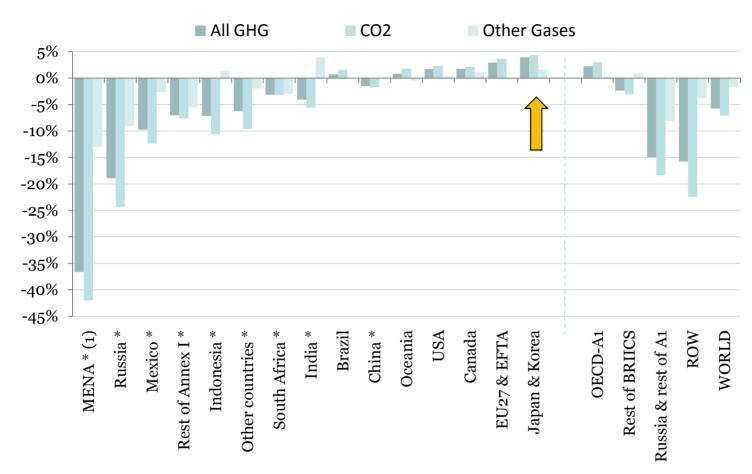
BRIICS emissions grow at rate exceeding +2% p.a. to 2050 while OECD emissions tend to level off.


Need to reverse current trends Alternative emission pathways

		Cumulative GHG emissions (GtCO2e)			
		2010 -	2020 -	2030 -	2050 -
		2020	2030	2050	2100
450 Core	Concentrations of GHGs limited to 450 ppm by the end of the 21st century; policy starts in 2013; full flexibility across time, sources and gases; global carbon market	485	450	635	405
450 Accelerated Action	As 450 Core, plus additional mitigation efforts until 2030	480	435	560	430
450 Delayed Action	As 450 Core, but until 2020 no mitigation action beyond Copenhagen pledges & fragmented carbon markets	505	495	655	335
550 Core	As 450 Core, but aiming at 550 ppm by the end of the century	505	525	985	1400



Low emission development: The issue of timing



450ppm Core - Emissions and cost of mitigation

Impact of phasing out fossil fuels subsidies as a standalone policy on GHG emissions in 2050

Note: Emissions exclude LULUCF.

Source: OECD ENV-Linkages model using IEA fossil-fuel subsidies data (IEA,2010)

^{*} Regions in which fossil fuel subsidies have been removed

⁽¹⁾ Middle-East and Northern Africa

Impact of phasing out fossil fuels subsidies as a standalone policy on GHG emissions in 2050

Real income impacts (in % deviation from baseline)

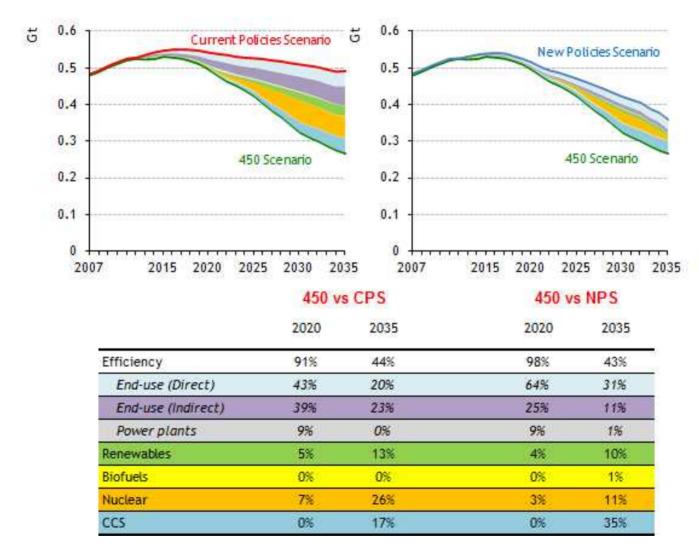
	2020			2050		
Region	Only FFS reform	450 Core no reform	450 Core with FFS reform	Only FFS reform	450 Core no reform	450 Core with FFS reform
WORLD	0.1	-0.1	-0.1	0.3	-6.3	-6.0
OECD A1	0.2	0.0	0.2	0.2	-4.8	-4.5
Rest of BRIICS	0.6	-0.3	0.3	1.1	-11.4	-10.7
Russia & rest of A1	-0.6	-0.4	-1.0	0.2	-14.6	-13.8
Rest of World	-1.2	-0.4	-1.4	-0.3	-2.8	-2.6

Source: OECD ENV-Linkages model using IEA fossil-fuel subsidies data (IEA, 2010)

Low emission pathways: The case of South Korea

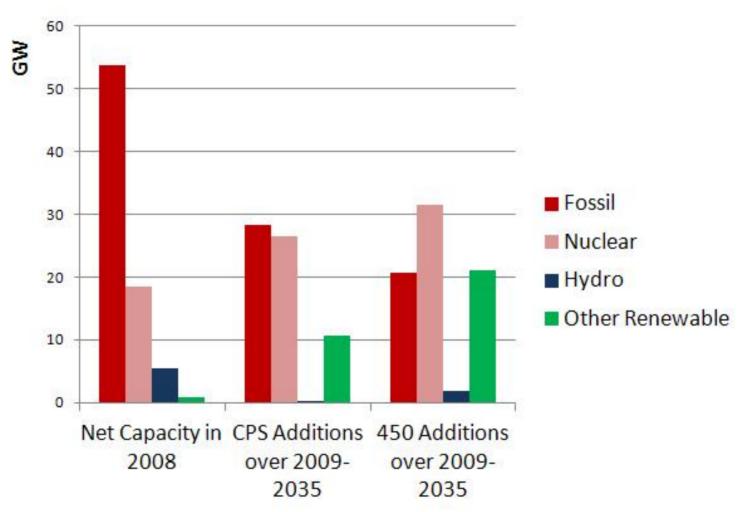
Insights from OECD Environmental Outlook to 2050

Economy-wide indicators for South Korea and Japan in the OECD Baseline simulation


				2010-2050 annual
	2010	2020	2050	growth rate
GDP PPP (Million US\$2010)	5600	6900	9800	1.4%
Population (Million)	175	173	146	-0.5%
GHG Emission (MtCO2eq)	1904	1849	2116	0.3%
Share of CO2	90%	88%	84%	-0.2%

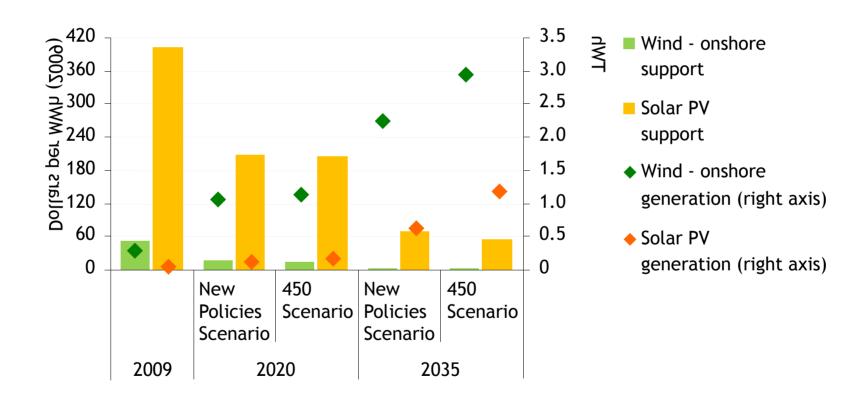
Relative decoupling between economic growth and GHG emissions.

By 2050, CO2 emissions still represent the bulk of GHGs emissions.


The importance of energy policies in South Korea Insights from IEA World Energy Outlook 2010

Power generation capacity in South Korea

Insights from IEA World Energy Outlook 2010



Low carbon technologies need to increase by 50% in the next 25 years. Wind and solar additions more than double.

Support for renewables pays off

IEA World Energy Outlook 2010

Global government support for and generation from PV and onshore wind in the New Policies Scenario

In several countries, onshore wind power becomes fully competitive with non-renewable generation by the end of the Outlook period in the New Policies 20 Scenario

Low emission pathways in Korea and Japan

Insights from OECD Environmental Outlook to 2050

Macro-economic impacts of climate policies in 2050

	Real GDP in PPP terms	Real income variation	<u>-</u>	
450 core	-1.5%	-3.5%	\Rightarrow Early action	
450 accelerated	-1.8%	-4.0%	and CCS remain affordable	
450 No CCS	-2.0%	-4.5%	_	
550 core	-0.2%	-0.6%	⇒ Carbon market	
550 Annex I (*)	-1.7%	-1.8%	linking is	
550 No linking	-2.3%	-1.9%	beneficial	

^(*) Note: Annex I includes Korea.

The role of policy making

- Policies can support the development low-carbon technologies
- There are reasons for optimism in pursuing a greener energy sector
 - Policy-makers and businesses are making commitments
 - National targets for renewable energy are spreading
 - More than 70 governments around the world, including all IEA member countries, have put in place targets and policies to support development of renewable energy technologies
- There is still an urgent need to accelerate change
 - Put a price on carbon
 - Mainstreaming low-carbon energy technologies
 - Fostering innovation
 - Creating the right conditions for markets to work establishing sound regulatory frameworks, eliminating harmful subsidies, investing in education and strengthening environmental governance
 - Plan and react: sector- and location-specific adaptation policies

Contact information

Dr. Bertrand Magné

OECD Environment Directorate

bertrand.magne@oecd.org

+33 (0)1 45 24 97 32

www.oecd.org/env/

