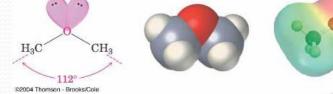
as an Alternative Fuel in Korea

Prof. Gye Gyu Lim, Ph.D.

Dep't of Chemical Engineering Hoseo University Chung Nam, Korea (kklim@hoseo.edu)

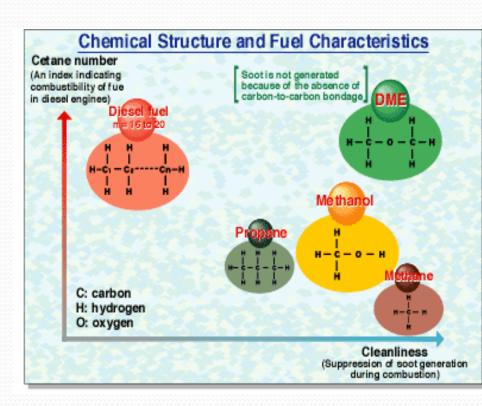
President of KDA (www. Koreadme.com)


on-10-18 HOSEO UNIV CIT R&D CENTER Northeast Asia Petroleum Forum 2011, Seoul Hilton Hote

- I. General Aspects
- II. Alternative Transportation Fuel in Korea A. R&D of DME Vehicles in Korea
 - B. Overseas DME Vehicles
- III. Conclusions

I. General Aspects

A. What is the DME?

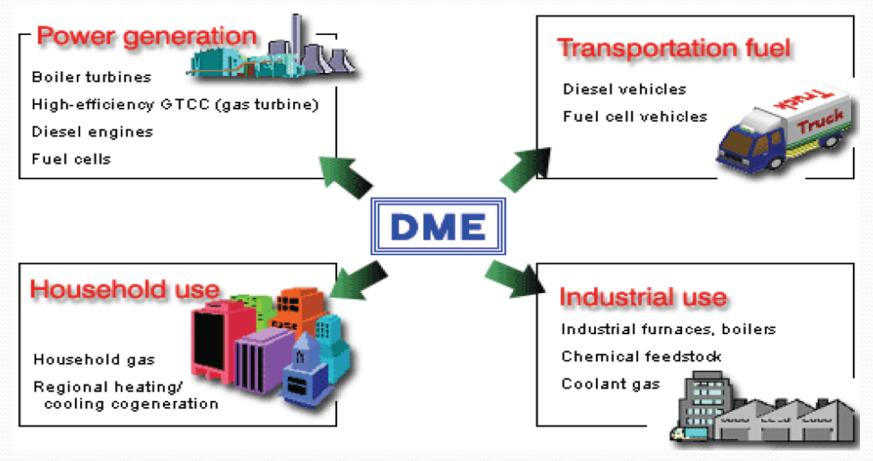

Properties	DME	Propane	Methane	Methanol	Diesel
Chem Formular	CH ₃ OCH ₃	C ₃ H ₈	CH4	CH3OH	C ₁₀ ~C ₁₈
B.Point(°C)	B.Point(°C) -25.1 -42.0 -161.5		-161.5	64.5	180~170
Liq.viscosity (kg/ms@25°C)	0.12~0.15	0.2	-		2~4
Sp. gravity	1.59	1.52	0.55	_	-
Vap. Press (atm@25°C)	6.1	9.3	<u>1@161.5</u> ∘C	1 @64.7°C	0.035max@21°C
Explo Limit (%)	3.4~17	2.1~9.4	5~15		0.6~6.5
Jgnition Temp (°C)	350	504	632	470	_
Cetane No.	55 ~60	5	0	5	40 ~ 55
Net Calorific value(kcal/kg)	6,900	11,100	12,000	5,024	10,000
Net calorific value (kcal/Nm³)	14,200	21,600	6,600	-	_
Energy Density* (MJ/l)	18.97	23.5	7.88	15.69	35.08

Energy Density ()is a value at 246kg/cm³.

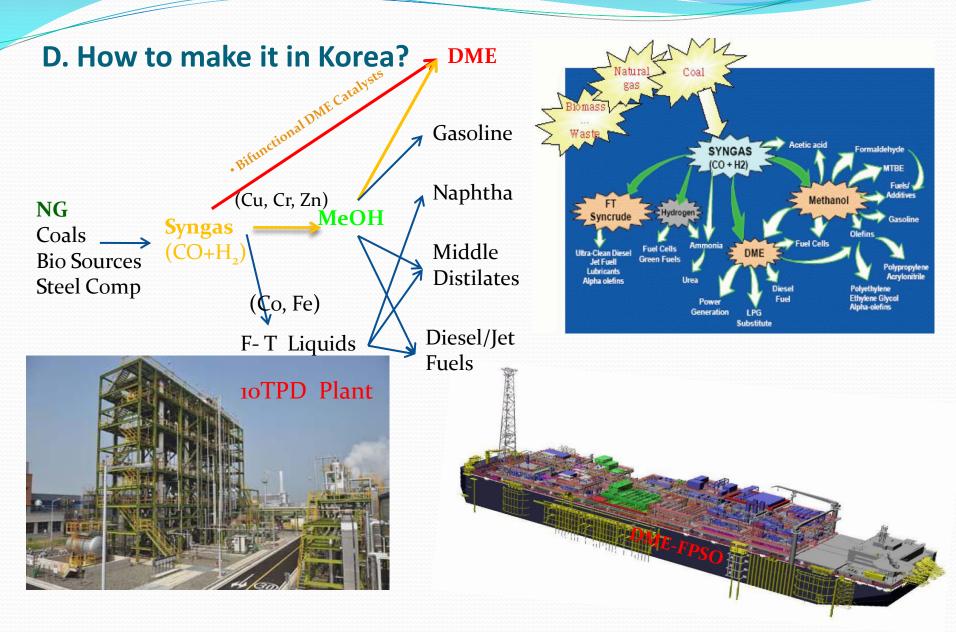
2011-10-18

HOSEO UNIV CIT R&D CENTER

B. Merit and Demerit for DME vehicle)


<u>Merit</u>

- High Thermal Efficiency
 - : Equal to DI Diesel E/G
- Compression Ignition : about 60 of Cetane Number
- Smokeless Combustion : nearly Zero PM (O₂ 34.8wt%)
- High EGR Tolerance : NOx can be Reduced
- Combustion Noise Reduced.
- > No health hazard
- LPG Infra can be Used
 - : Liquefied at 5-6 bar


<u>Demerit</u> Combustion Noise Reduced.
 > Low Lubricity & Viscosity : Wear & Leakage Problem
 > High Compressibility : Difficult to Injection Control

Elastomer attack : Sealing program

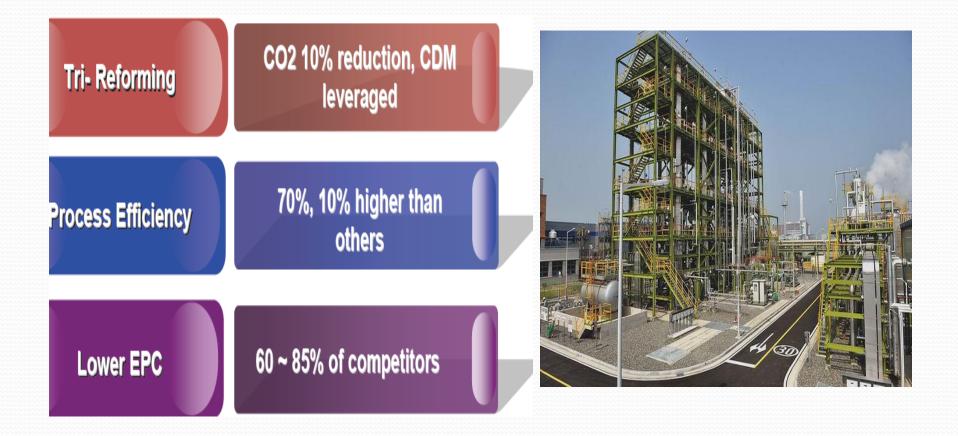
C. Where to use it in Korea?

2011-10-18 HOSEO UNIV CIT R&D CENTER

2011-10-18 HOSEO UNIV CIT R&D CENTER

E. Is it feasible and economical?

Profitability Calculation


- Iton DME requires 1.42tonnes of MeOH
- Fixed cost ~\$45/t
- DME sales price is a function of LPG price
- Listed sale price is usually ~80% of LPG price
- DME sales price represents an about 37% premium to energy value

DME Production Cost=1.42MeOH Price+Fixed Costs

DME Selling Price = LPG Price x (Selling Factor) x Selling Factor Avg x Selling Factor Avg = 75 ~90 %

(Ben Iosefa, the 6th Asian DME Conference, Seoul, Korea 2009)

F. Dev. of KOGAS's Economic DME Process

2011-10-18 HOSEO UNIV CIT R&D CENTER

G. Milestones on KOGAS DME Plant

Demo Plant 10TPD (2004 - 2008)

Overseas DME Plants

- 1. Saudi Arabia:
 - 1MTPA(2010 2013)
- 2. Oman (MOU, 2010)
- 3. Indonesia(MOU,2010)
- 4. Iran (MOU, 2010)

Pilot Plant 50KPD (2003 – 2006)

DME-FPSO (2010-2015)

Lab/Bench Scale (2001 – 2003)

2011-10-18 HOSEO UNIV CIT R&D CENTER

II. Alternative Transportation Fuel in Korea

A. R&D of DME Vehicles in Korea

1. Emission test(cvs-75mode) w/ Diesel Oxydation Catalyst (KIER)

Proto-type DME Truck (3.3 Liter)

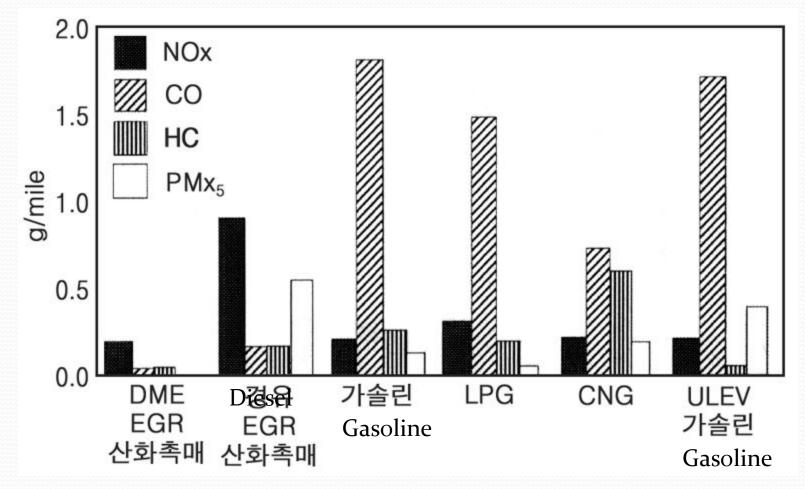
T NEED		Diesel	DME	DME[w/DOC]
	Nox[g/kWh]	3.34	2.18	2.22
	CO[g/kWh]	2.20	3.54	0.39
	THC[g/kWh]	0.89	0.37	0.25

2011-10-18 HOSEO UNIV CIT R&D CENTER

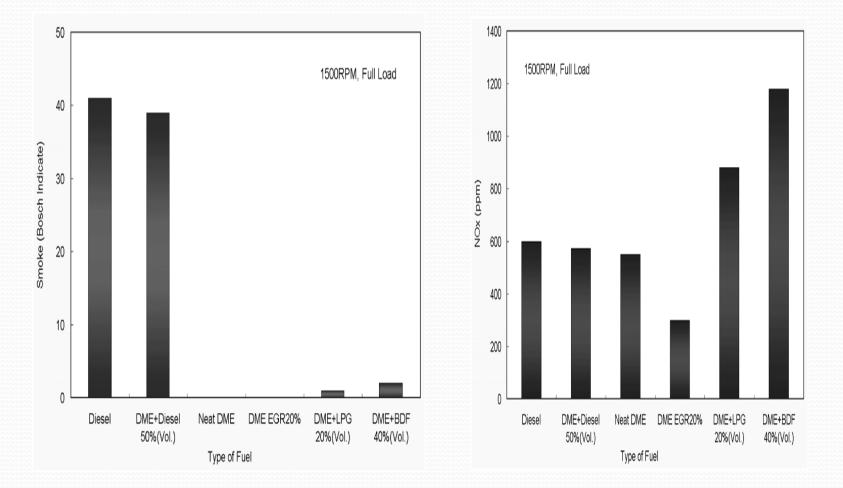
Proto-type Midium-duty DME Bus(KIER)

Model	BM090(DAEWOO)
Displacement	8,071 CC
Туре	6 cylinder, TCI
Engine	DEo8TiS
Power	225 PS/2,300 rpm
Torque	90 Kg.m
Speed	120 km/h

2011-10-18 HOSEO UNIV CIT R&D CENTER

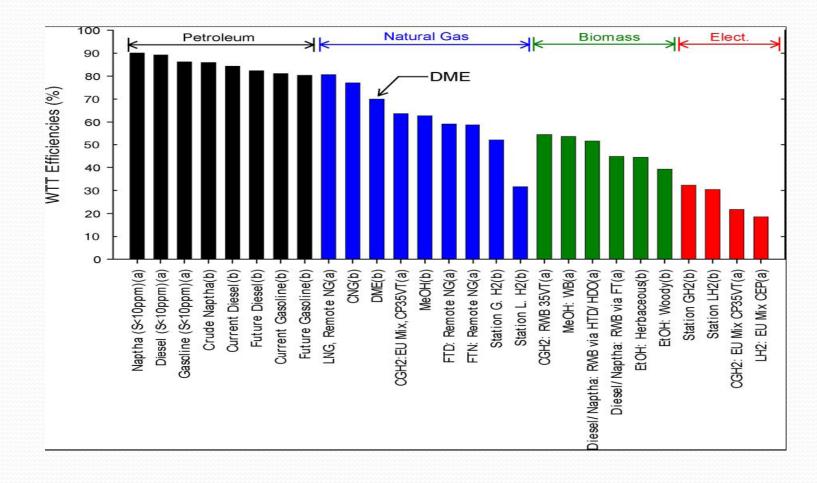

The results of vehicle tests -EGR effects [KATECH, 6th Asian DME Conf.]

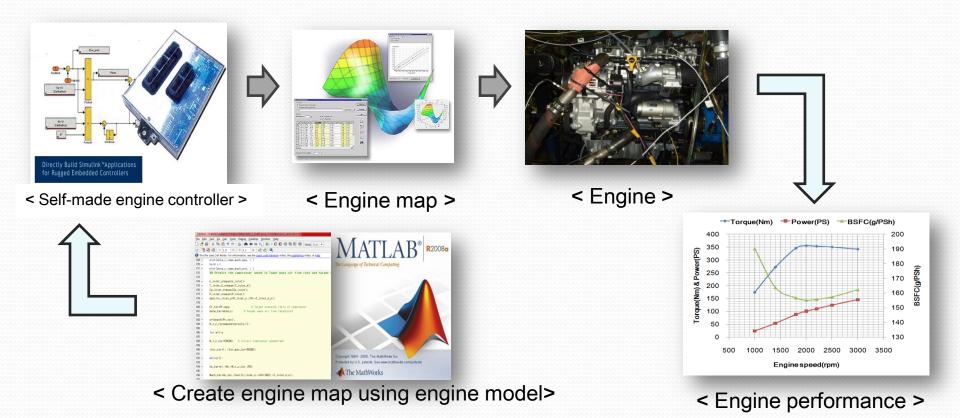
Case (1991 cc)	Condition (Hot start)		Emission (g/km)				Fuel Economy (km/L)
	Start		HC	СО	NO x	CO 2	
Base (Diesel)	Cold Start	w/EGR & boost	0.064	0.349	0.918	194.53	13.77
DME		w/ EGR & boost	0.180	0.641	0.350	184.42	10.52
DME	Hot Start	w/o EGR & boost	0.31	0.541	1.159	185.97	10.42


2011-10-18 HOSEO UNIV CIT R&D CENTER

2. Exhaust Gases from various Fuels (Dae Yeop Lee, Inha Univ.)

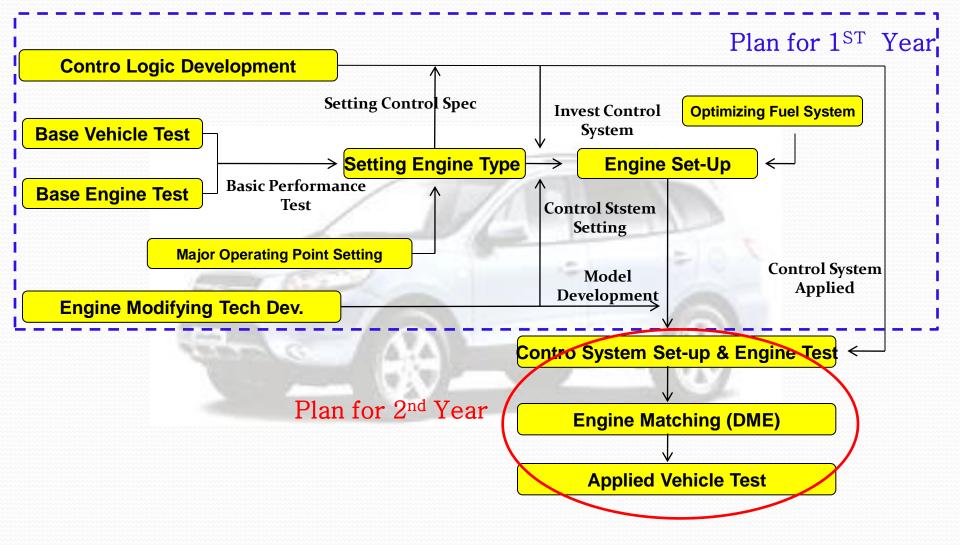
2011-10-18 HOSEO UNIV CIT R&D CENTER


2-1. Smoke & NOx from various Fuels (Y.J.Lee, Y.D. Pyo, KIER)


2011-10-18

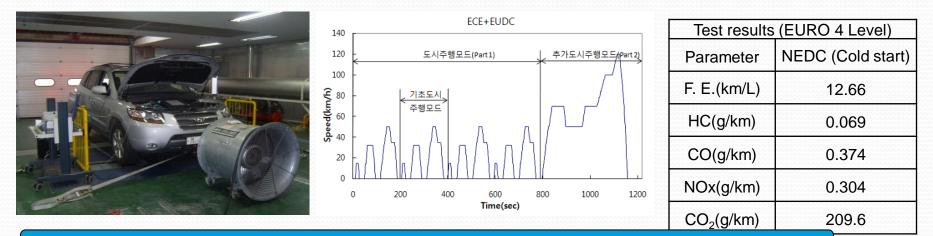
HOSEO UNIV CIT R&D CENTER

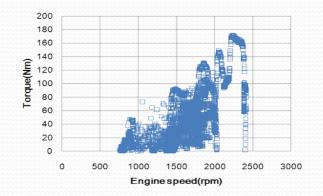
3. Energy Efficiency of DME



4. Engine Performance Test based on broad Operation Range (KATECH)

HOSEO UNIV CIT R&D CENTER

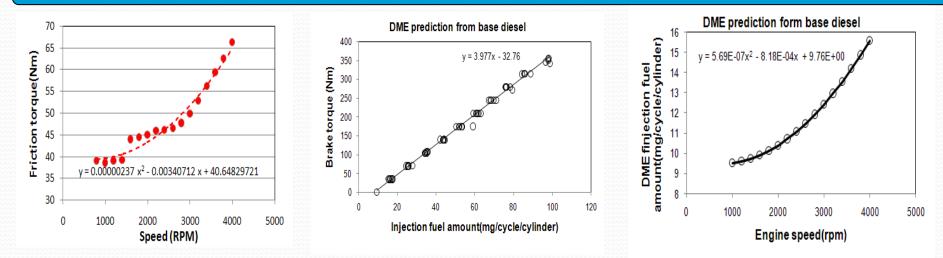

4_1. Control Logic Development for DME Vehicles(KATECH)


4₋₂. Santafe Performance Test (KATECH)

Vehicle Power Line Mode Test

Base Vehicle Driving Mode & Performance Test Result s

Major Range of Engine Driving Mode – Testing Major Performance Range of Engine


RPM	Max. torque(Nm)	BEMP (bar)
1000	60	3.5
1200	79.2	4.7
1400	98.4	5.8
1600	117.6	6.9
1800	136.8	8.0
2000	156	9.2
2200	175.2	10.3
2400	194.4	11.4

HOSEO UNIV CIT R&D CENTER

4_3. Engine Power Test (D-2.2 eng.)(KATECH)

Photo for Engine Base Engine Spec. 2.2 liter Diesel(base engine) 0.45 Description Specification 0.4 efficiency 0.35 Displacement 4cyl - 2200 cc 0.3 Brake thermal e 0.25 0.15 0.1 0.15 0.25 Bore × Stroke 87 × 92 (mm) Comp. ratio 17.3 2.2 liter Diesel(baseengine) 0 1000rpm 1400rpm 1800rpm 2000rpm 0 **Breathening sys** VGT / HP EGR VOx(g/kWh) Fuel system Common rail type

Base 엔진 데이터를 이용한 DME 엔진의 기본 보정 데이터 및 보정용 기본 모델 구성

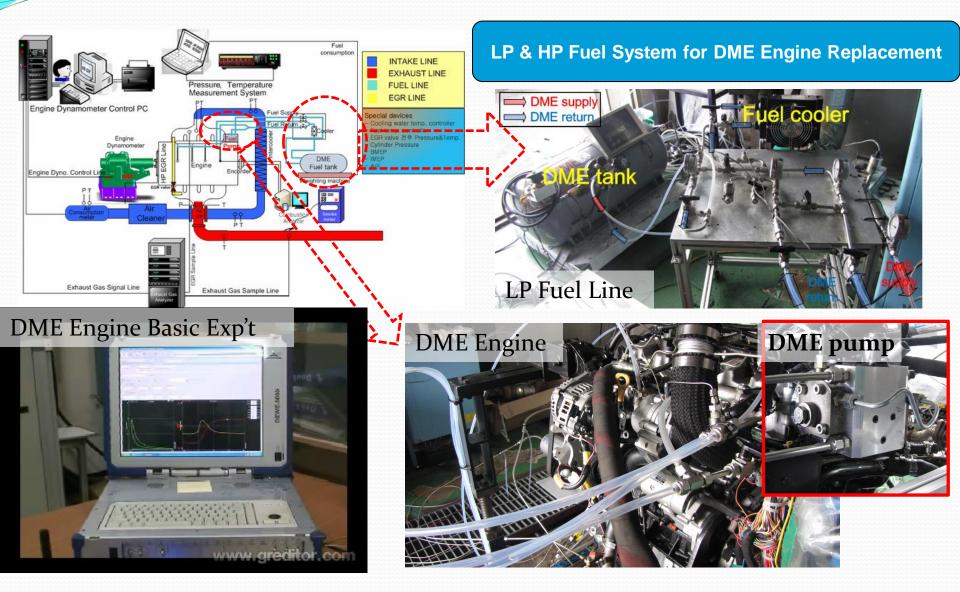
Comparison Data of base Engine

1000rpm

1800rpm

-2000rpm -2200rpm -2500rpm 3000mm

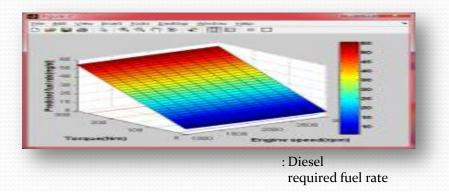
2200rpm 2500rpm


= 3000rpm

-1400rpm

Torque(Nm)

HOSEO UNIV CIT R&D CENTER


4_4. Engine Testing Equipment Set-Up for DME Fuel (KATECH)

HOSEO UNIV CIT R&D CENTER

4₋₅. Basic Algorism for DME Fuel Injection (KATECH)

• Verifying Injection Model for DME Fuel (Injection duration, timing, pressure)

Injection timing v.s. Fuel Ratio

4₋₆. Suitability Test for Required Fuel Pressure(TATECH)

- Pressure 600 bar acquired @ 2500rpm
- Good Enough for Optimum Engine Performance.

HOSEO UNIV CIT R&D CENTER Northeast Asia Petroleum Forum 2011, Seoul Hilton Hotel

B. Overseas Buses and Trucks

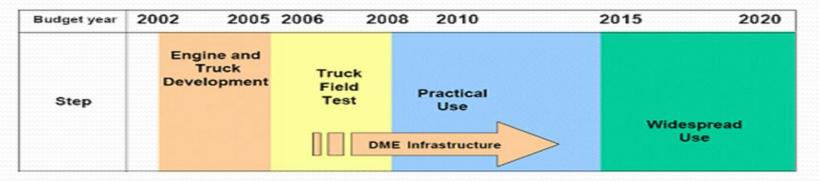
Sweden DME BUS

China DME BUS

2011-10-18

Volvo Truck

ISUZU DME BUS


HOSEO UNIV CIT R&D CENTER Northeast A

C. Development of DME Vehicles in Overseas

Europe		China		Russia	
Country/ Name	EU/AFFORHD	Country/ Name	China/ Shanghai City Bus	Country/ Name	Russia/ LDT in Moscow
Period	2002 - 2003	Period	Announced in May '05	Period	2002- :Renewal every
Organizers Vehicle	Volvo/AVL/DTU/TNO/ BP/Vaxjo city HD DME Track	Organizers	Shanghai Traffic Univ./ Shanghai Automobile/ Shanghai Diesel /others	Organizers	year Moscow Traffic Bureau/ Engine Research Center/
Spec	Engine :9.4L with I/C Turbo Emissions (target)	Vehicle Spec	Shanghai city DME Bus Engine:8.3L with I/C&T/C	Vehicle Spec	FGUP-NAMI /Mos.S.Univ. LT DME Track (bi-fuel) Engine :6L with Turbo
Performance	-PM: 0.02 g/kWh (EURO4) -NOx: 2.0 g/kWh (EURO5)	Performance	Emissions (target) -PM: 0.05 g/kWh(EURO3)	Performance	Emissions (target) -PM, NOx : unclear
Mfg Sample Number	1 unit : 2005 - 3 units :2006 - 2008 30 units :2008 -	Mfg Sample Number	-NOx:4.014 /kWh(EURO3) 10 units :- 2006/E (plan)	Mfg Sample Number	As of 2006: 3 teams x 10 = 30 units 50k units :2005-2010

D. DME Vehicle in Japan

Vehicle View	DME		DME DME	DIVE DIVE	
Category Usage	HDV Long haul fleet	MDV Working w/crane	LDV Urban delivery	LDV Urban delivery	HDV Road cleaning
GVW ton (Payload ton)	20 (10)	7.9 (3.5)	5.8 (2)	4.9 (2)	16.5 (6.5-7.5) [plan value]
FIE	in-line jerk type	Common rail	in-line jerk type	Common rail	in-line jerk type
Fuel tank Liter x No.	171 x 2	135 x 1	134 x 2	135 x 1 [plan value]	171 x 2 [plan value]
Manufacturer	Nissan Diesel corp. NTSEL	Isuzu (advanced engineering center Ltd)	Bosch corp. (JPN) NTSEL	Isuzu (advanced engineering center Ltd)	Nissan Diesel corp. NTSEL
Remarks	-Certificated by MLIT in Aug.' 06 -w/DeNOxCat	•Certificated by MLIT in Nov.' 05 •w/crane	Certificated by MLIT in May' 06	To be certificated by MLIT in Mar ' 07	To be certificated by MLIT in Mar ' 07

HOSEO UNIV CIT R&D CENTER

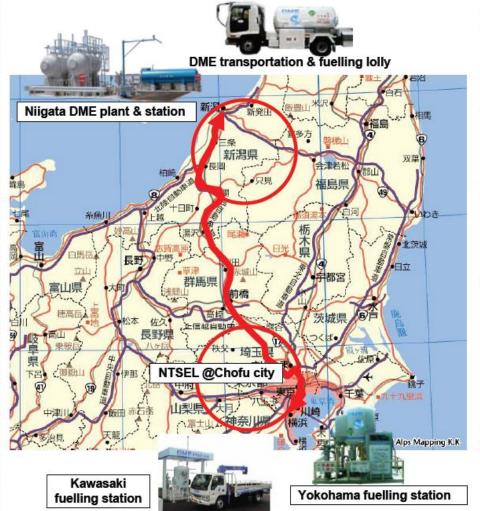
D. DME Vehicle in Japan (Road Test)

Kanetsu Highway, HDT

Road Cleaning Work, Yokohama

Up-Slope Test, Hakone, MDT

Niigata Filling station, HDT



High speed oval, Tsukuba, LDT

Kawasaki Filling station, MDT

E. Route of HDT Road Test for DME Vehicles

Route of HDT Road Test

•Long haul fleet between Yokohama and Niigata where DME fuelling stations are already set up.

Running Distance

- •HDT :400km/day x 20days/month
- LDT :140km/day x 20days/month

Payload condition

•To drive with zero, half and full payload by dummy weights in cases for each purpose

Test Items

- •Exhaust emissions and bsfc to be tested at point of start, middle and finish for deterioration check
- Drivability assessment by driver
- •Disassembled inspection check of FIE system after certain distance
- Further improvement to be carried out on durability, reliability and practicability if any problems to be found during road test

III. Conclusions

Market expects cheaper and cleaner energy of DME

 -Korea needs 0.5~1.0 million tons a year until 2013
 -Global needs more than a quarter billion tons a year

Localization of DME Production Technology

 Localization of Source Tech and License assurance
 Dev. of Core Technology for DME Prod. Tech. (Catalyst, Reactor Design, Sep. Process)
 New DME-FPSO Process Development using DME Tech.

Development of Overseas Gas Field

 Plant Export of DME Production using Natural Gas, Biomass, Coal Bed Methane

• KOGAS looks for Partners possessing Gas source to join on this promising shuttle

CO₂, CDM(Clean Development Mechanism) deal is a hidden source of profit

Creation of DME New Demand

-Power generation, Industrial uses, Households, Transportation

- -Construction of Infrastructure for Domestic Supply
- -Development of Equipment for DME/LPG Blending,

-DME Vehicles

Thank you for your attention!

2011-10-18 HOSEO UNIV CIT R&D CENTER