Estimation of GHG Mitigation Potential using MARKAL in Korea

NOH, Dong-Woon November 17, 2011

- . Introduction 020
 - ; 30% reduction of GHG vs. BAU
- Framework Act on Low Carbon, Green Growth (*09.12)
 - ; transform voluntary to (domestically) binding actions
- effective strategy to reduce GHG emission
 - ; cost-effective GHG reduction for green growth
- GHG mitigation potential in energy sectors in 2020
 - ; technological potential using MARKAL with 2005 price

Introduction

- voluntary mitigation target by 2020
 - ; 30% reduction of GHG vs. BAU
- Framework Act on Low Carbon, Green Growth (*09.12)
 - ; transform voluntary to (domestically) binding actions
- effective strategy to reduce GHG emission
 - ; cost-effective GHG reduction for green growth
- GHG mitigation potential in energy sectors in 2020
 - ; technological potential using MARKAL
 - ; 2005 constant price and 5.5% discount rate

- MARKAL(MARKet Allocation)
 - ; least-cost solution with constraints
 - ; technology-rich/bottom-up optimization model
- structure of MARKAL
 - ; objective function of cost
 - annualized cost of investment/management for technologies
 - ; constraints of energy and environment
 - ; decision variables of technology(investment, activity, etc.), energy supply, etc.

Energy System

- primary and conversion sector

- primary energy supply→
- conversion→
- final energy consumption

	dom. production	nuclear, renewables			
primary	import	coal, oil(crude, products), LNG			
energy	export	oil products			
	bunkering	aviation and maritime			
	power	hydro, fossil(coal, LNG, oil), nuclear, renewable			
	oil refining	AD, VD, hydro-cracking/treating, reforming, MTBE, etc			
conversion	city gas	import of LNG, manufacturing of city gas			
	district heating	CHP with B-C, LNG			
	hydrogen	IGCC, LNG, nuclear, renewable			

Energy System - final consumption sector

		agri./fish	classified in other manufacturing		
		mining	mining		
	industry	manufacturing	automobile, cement, petrochemical, paper, iron & steel		
		other manuf.	other manufacturing		
		construction	construction		
final		railroad	passenger, freight, subway, KTX		
consump -tion		land	passenger car, bus, truck with private and commercial		
	transport	water	passenger, freight		
		air	passenger, freight		
	residential	5 usages	cooking, heating, cooling, lighting, electric appliances		
	commercial	5 usages	cooking, heating, cooling, lighting, power		
	public	energy	oil, LNG(city gas), electricity, renewable, heat, etc.		

- RES(Reference Energy System) : network diagram of energy and material flow

	components	final demand for sectors		
	energy	crude oil, gasoline, steam coal, electricity, etc.		
commo dities	material	materials as cement, limestone, etc.		
G.10.05	emissions	CO ₂ , CH ₄ , etc.		
energy	domestic production	solar, wind, etc.		
sources	import	crude oil, coking coal, etc.		
	resource technology	import process		
	conversion technology	fossil fuel electricity technology, district heating, oil ref. technology, etc.		
technolo gies	transformation technology	-		
3	process technology	cement kiln, naphtha cracker, etc		
	demand technology	electricity appliances, etc		
	sinks	export of energies, forestry, etc		

- conversion

	power	power consumption	
	oil refining	production of oil	
	on remining	products	
	city gas	domestic gas	
conversion	city gas	consumption	
	district	production of heat	
	heating	production of fleat	
	hydrogen	production of	
	riyarogeri	hydrogen energy	

- industry

- demand of industry: production of products for each sector

	agri/fish.		demand for other energy	
	mining		demand for other energy	
		foods, tobacco	demand for other energy	
		textile & apparel	demand for other energy	
		wood & prodc	production of papers	
		pulp.publication	production of papers	
		petrochemical	production of basic material(naphtha cracking)	
inductry	manufacturing	non-metallic	production of cement	
ilidustry	Inanulacturing	iron & steel	production of iron from furnace	
		IIOII & Steel	production of iron from electric-arc	
		non-ferrous	demand for other energy	
		fabricated material	production of cars	
		other manufacturing	demand for other energy	
		other energy	demand for other energy	
	construction		demand for other energy	
	others		demand for other energy	

- industry

- demand of industry: increase except cement and paper

- residential

residential sector : energy consumption for usage; rapid increase except PC

residential	cooking	energy consumption per household for cooking
	heating	energy consumption per household for heating
	cooling	energy consumption per household for cooling
	lighting	energy consumption per household for lighting
	appliance	energy consumption per appliance

	2005	2010	2020	2030	2040	2050
households (mn)	15.887	17.152	19.012	19.871	19.294	17.629

- commercial

- commercial sector : energy consumption per area

commercial	cooking	energy consumption per area for cooking
	heating	energy consumption per area for heating
	cooling	energy consumption per area for cooling
	lighting	energy consumption per area for lighting
	power	energy consumption per area for power

	2005	2010	2020	2030	2040	2050
area (mn m3)	316.095	376.334	550.285	726.667	858.012	965.114

- transport

- transport : final demand for transport mode

		pass. Car	registered car
		prirvate bus	registered car
	land	private truck	registered car
	Idila	taxi	registered car
		commercial bus	registered car
		commercial truck	registered car
	railroad	passenger	passenger transported
transport		freight	freighted transported
		subway	passenger transported
		KTX	passenger transported
		passenger	passenger transported
	water	domestic freight	freighted transported
		int'l freight	freighted transported
	air	domestic passenger	passenger transported
	air	int'l passenger	passenger transported

transport

- passenger car and aviation demand increase

Energy Prices

- emission factor

- calorific value : net-calorific value

- energy prices : price spread vs. crude oil

- emission factor : IPCC factor

		2005	2010	2020	2030	2040	2050
crude oil	(\$/bl)	50.53	85.63	72.03	83.70	104.57	115.70
coking coal	(\$/ton)	109.88	128.78	108.33	125.88	157.27	174.00
steam coal	(\$/ton)	56.11	83.64	70.36	81.77	102.15	113.02
LNG	(\$/mmbtu)	6.81	12.26	11.35	14.99	18.72	20.71
gasoline	(\$/liter)	0.32	1.58	1.33	1.54	1.93	2.13
diesel	(\$/liter)	0.41	1.21	1.02	1.18	1.48	1.64

Mitigation Options - conversion

- technological options in power and oil refining ; new process/technology, fuel switch, CHP, renewable, fuel cell, CCS(10%, 5% for bituminous, gas fueled power capacity in 2020, respectively)

	power	oil ref.	city gas	hydrogen
new process		0		
fuel switch		0		
raw material switch				
CHP		0		
renewable				
CCS	0			
fuel cell	0			0
loss in transmission				

- conversion

- new process/technology: compete with current tech.

power	district heating	oil refining	city gas	hydrogen
-	-	3 technologies at 2 process	-	-

- fuel switch : sub. B-C/coal by LNG

power	district heating	oil refining	city gas	hydrogen
-	-	20% of B-C by 2015, 50% after 2015	-	-

Mitigation Options - conversion

- CHP: sub. purchased elec./heat by CHP

power	district heating	oil refining	city gas	hydrogen
-	-	20MW by 2015, 30MW after 2015	-	-

- CCS(apply to coal and gas power plant) and fuel-cell power

CCC			Fuel cell		
CCS	2015	2020	2030	3040	2050
10% by 2020, 100% of coal by 2030, 5% by 2020 to 50% by 2050 for gas	2.5	45	1,364	9,457	9,783

- industry

- technological options in industry
 - ; new process, fuel switch, raw material switch, CHP, renewable, CCS

	automobile	cement	petrochemical	paper	iron & steel
new process	0	0	0	0	О
fuel switch		0	0	0	0
raw material switch		0			
CHP	0	0	0	0	
renewable	0				
CCS		0	0		0

- industry

- new process/technology: compete with current tech.

automobile	cement	petrochemical	paper	steel & iron
28 tech.	4 tech.	5 tech.	8 tech.	6 tech.

- fuel switch : sub. B-C/coal by LNG

automobile	cement	petrochemical	paper	steel & iron
-	5% of coal by waste-plastic by 2015	100% of B-C by 2020	100% of B-C by 2015	100% of B-C by 2015

- raw material switch : sub. Slag cement

automobile	cement	petrochemical	paper	steel & iron
	6 million ton of			
-	slag by 2015			

- renewable : solar power

automobile	cement	petrochemical	paper	steel
15MW by 2015	-	-	-	-

- industry

- CHP: sub. purchased elec./heat by CHP

automobile	cement	petrochemical	paper	steel
20MW by 2015	20MW by 2015, 45MW by 2020	60MW by 2015, 60MW by 2020, 60MW by 2025	12.5% of electricity consumption by 2030	-

- CCS: cement, petrochemical, steel

automobile	cement	petrochemical	paper	steel
-	30% by 2030, 50% of kiln by 2050	10% by 2025, 50% of NCC by 2050		10% by 2025, 50% of furnace by 2050

- residential

technological options in residential sector
 ; efficient process/technology for heating, cooling,
 lighting, appliance, fuel cell

heating	vacuum insulation
cooling	motor control, efficient motor
lighting	efficient light(LED, etc.)
appliances	LCD+standby power for TV, efficient inverter for refrigerator
fuel cell	13.8MW in 2020

- residential

- heating : penetration rate of vacuum insulation

2010	2020	2030	2040	2050
10%	30%	50%	70%	90%

- cooling : penetration rate of efficient system

2010	2020	2030	2040	2050
20%	40%	60%	80%	100%

- lighting : penetration rate of efficient system

2010	2020	2030	2040	2050
20%	60%	100%	100%	100%

- residential

- appliance : penetration rate of vacuum insulation

2010	2020	2030	2040	2050
20%	40%	60%	80%	90%

- fuel cell: introduction MW

2015	2020	2030	2040	2050
0.9	13.8	302.8	3,329.3	8,013.3

Mitigation Options - commercial

- technological options in commercial sector ; efficient heating, cooling, lighting, fuel cell

heating	vacuum insulation
cooling	efficient cooling(absorber)
lighting	efficient CFL
Fuel cell	23.9MW in 2020

Mitigation Options - commercial

- heating : penetration rate of vacuum insulation

2010	2020	2030	2040	2050
10%	30%	50%	70%	90%

- cooling : penetration rate of efficient system

2010	2020	2030	2040	2050
20%	40%	60%	80%	100%

- commercial

- lighting : penetration rate of efficient system

2010	2020	2030	2040	2050
20%	60%	100%	100%	100%

- fuel cell: introduction MW

2015	2020	2030	2040	2050
1.3	23.9	798.5	7,957.5	11,830.3

- transport

- technological options in land transport mode
 - ; increasing share of hybrid, electric and fuel cell car for passenger car/bus/truck
 - ; biodiesel for bus and truck

	,
land	
- passenger car	hybrid→electric→fuel cell car
- bus	fuel cell car
- truck	fuel cell car
railroad	-
water	-
air	-
bio-diesel	10% in 2020, 20% in 2030
· · · · · · · · · · · · · · · · · · ·	

- transport

- share of private car

	2005	2010	2020	2030	2040	2050
current car(gas, diesel)	1.00	0.95	0.50	0.36	0.18	0.05
hybrid	-	0.05	0.30	0.10	-	-
electrical car	-	-	0.20	0.50	0.40	0.10
fuel cell car	-	-	-	0.04	0.42	0.85

- transport

- share of taxi by fuel-type

	2005	2010	2020	2030	2040	2050
current fuel(butane)	1.00	1.0	0.50	0.36	0.25	0.10
hybrid	-	-	0.30	0.10	-	-
electrical car	-	-	0.20	0.50	0.30	-
fuel cell car	-	-	0.01	0.04	0.45	0.90

- transport

- share of private bus

	2010	2015	2020	2025	2030-
Bio-diesel share	1%	5%	10%	15%	20%

	2005	2010	2020	2030	2040	2050
current car(gas, diesel)	1.00	0.95	0.90	0.78	0.70	0.63
bio-diesel	-	0.05	0.10	0.20	0.20	0.20
fuel cell car	ı	-	-	0.02	0.10	0.17

- transport

- share of commercial bus

	2005	2010	2020	2030	2040	2050
current car	1.00	1.00	1.00	0.92	0.09	-
fuel cell car	-	-	-	0.08	0.91	1.0

- share of private truck

	2005	2010	2020	2030	2040	2050
current car	1.00	1.00	0.90	0.74	0.03	_
Bio-diesel			0.10	0.20	0.20	
fuel cell car	_	-	-	0.06	0.67	1.0

- share of commercial truck

	2005	2010	2020	2030	2040	2050
current car	1.00	1.00	0.90	0.67	0.40	-
Bio-diesel			0.10	0.20	0.20	0.20
fuel cell car	-	-	-	0.13	0.40	0.80

CO2 Emission

- base case

- emissions increases 0.6% annually by 2050
 - ; high for commercial/conversion, low for industry(1,000 tcO₂)

	2005	2010	2020	2030	2040	2050	'05-'50
(conversion)	186,073	239,474	266,915	308,312	337,860	342,624	1.4%
industry	235,694	271,352	298,993	292,834	280,194	262,346	0.2%
- manuf.	168,536	201,207	239,109	239,796	234,186	226,413	0.7%
- const.	4,150	4,679	2,686	2,900	3,153	3,423	-0.4%
commercial	57,904	70,088	86,165	101,160	116,511	127,863	1.8%
public	14,492	17,298	17,772	18,689	19,579	19,240	0.6%
residential	71,478	76,749	82,862	83,814	80,429	71,616	0.0%
transport	101,109	116,001	143,379	153,904	154,937	151,242	0.9%
CO2	480,677	551,488	629,171	650,401	651,649	632,307	0.6%

Mitigation Potential

- conversion(1,000tCO₂, \$1,000/tCO₂)

- technological potential is 32.8% of GHG emission of conversion sector in 2020
 - ; CCS has the highest potential(99.4% of potential)

sector		pote	ntial	potential vs. emission		
sector options	options	option	cum.	nat'l	sector	
	fuel cell	-299	-299	0.0%	-0.1%	
power	CCS	-86,689	-86,989	-13.8%	-37.5%	
	trans.		-86,989	-13.8%	-37.5%	
	CHP	-137	-137	0.0%	-1.1%	
oil ref.	LNG	-416	-553	-0.1%	-4.4%	
	new proc.		-553	-0.1%	-4.4%	
sub-total			-87,542	-13.9%	-32.8%	

Mitigation Potential

- conversion(1,000tCO₂, \$1,000/tCO₂)

- fuel switch(LNG) is the most expensive option ; fuel cell and CHP are negative cost options

sector	options	potential	cum.potential	marginal cost	average cost
	fuel cell	-299	-299	-0.024	-0.024
power	CCS	-86,689	-86,989	0.019	0.019
	loss in tr.		-86,989	-	0.019
	СНР	-137	-137	-0.123	-0.123
oil ref.	LNG	-416	-553	0.170	0.097
	new proc.		-553	-	0.097
sub-total			-87,542	0.170	0.019

- conversion(1,000tCO₂, \$1,000/tCO₂)

- marginal abatement cost(\$170/tCO₂)

- conversion(1,000tCO₂, \$1,000/tCO₂)

- low average cost(\$19/tCO₂) due to CCS
- high potential with low cost(cost-effective)

- industry(1,000tCO₂, \$1,000/tCO₂)

- mitigation potential in industry is 1.8% of GHG emission in 2020
 - ; cement(slag) has half of the potential
 - ; small potential due to high efficiency
 - ; CCS has potential after 2010

- industry(1,000tCO₂, \$1,000/tCO₂)

sector	ontion	potential	cum	potential vs. emis.		
Sector	option	ротепна	cum.	nat'l	sector	
	new proc.	-7	-7	0.0%	0.0%	
natrachamical	CHP	-184	-191	0.0%	-0.3%	
petrochemical	LNG	-899	-1,091	-0.2%	-1.9%	
	CCS		-1,091	-0.2%	-1.9%	
	CHP	-179	-179	0.0%	-1.1%	
	plastic	-702	-881	-0.1%	-5.4%	
cement	slag	-1,711	-2,592	-0.4%	-16.0%	
	CCS		-2,592	-0.4%	-16.0%	
	new proc.		-2,592	-0.4%	-16.0%	
	new proc.	-143	-143	0.0%	-4.0%	
automobile	PV	-40	-183	0.0%	-5.1%	
	CHP	-13	-196	0.0%	-5.5%	
	CHP	-209	-209	0.0%	-3.2%	
paper	new proc.	-449	-657	-0.1%	-10.0%	
	LNG	-154	-811	-0.1%	-12.3%	
steel	new proc.	-90	-90	0.0%	-0.1%	
	CHP	-437	-528	-0.1%	-0.4%	
	LNG	-166	-693	-0.1%	-0.6%	
	CCS		-693	-0.1%	-0.6%	
sub-total			-5,383	-0.9%	-1.8%	

- industry(1,000tCO₂, \$1,000/tCO₂)

- marginal abatement cost(\$190/tCO₂)

- industry(1,000tCO₂, \$1,000/tCO₂)

- cumulated average cost is negative(-\$19/tCO₂)
 - ; low potential with low cost

- commercial $(1,000tCO_2, $1,000/tCO_2)$

- mitigation potential is 34.1% of emission in 2020 (4.7% of nat'l emission)
- ; high potential for lighting

sector	options	pote	ntial	potential vs. emission		
		potential	cum.	nat′l	sector	
commercial	fuel cell	-87	-87	0.0%	-0.1%	
	heating	-9,116	-9,203	-1.5%	-10.7%	
	cooling	-7,040	-16,243	-2.6%	-18.9%	
	lighting	-13,166	-29,409	-4.7%	-34.1%	
sub-total			-29,409	-4.7%	-34.1%	

- commercial(1,000tCO₂, \$1,000/tCO₂)

- high marginal cost(\$906/tCO₂) and average cost(\$603/tCO₂)

sector	options	potential	cum. potential	marginal cost	average cost
commercial	fuel cell	-87	-87	-0.036	-0.036
	heating	-9,116	-9,203	0.015	0.014
	cooling	-7,040	-16,243	0.806	0.358
	lighting	-13,166	-29,409	0.906	0.603

- commercial(1,000tCO₂, \$1,000/tCO₂)

- high technological potential with high cost

- residential(1,000tCO₂, \$1,000/tCO₂)

- mitigation potential is 13.1% in 2020
 - ; heating(vacuum insulation) has the biggest potential

coctor	ontions	pote	ential	Potential vs. emission			
sector	options	potential	cum.	nat'l	sector		
	CFL	-173	-173	0.0%	-0.2%		
	fluorescent	-946	-1,118	-0.2%	-1.3%		
	white ramp	-241	-1,360	-0.2%	-1.6%		
	fuel cell	-50	-1,410	-0.2%	-1.7%		
	heating	-8,295	-9,705	-1.5%	-11.7%		
residential	air cond.	-168	-9,873	-1.6%	-11.9%		
	refrigerator	-465	-10,338	-1.6%	-12.5%		
	washing	-196	-10,534	-1.7%	-12.7%		
	TV	-290	-10,824	-1.7%	-13.1%		
	elec. fan	-31	-10,855	-1.7%	-13.1%		
sub			-10,855	-1.7%	-13.1%		
에 し 八 경 제 연 구 원 KOR EA ENERGY ECONOMICS INSTITUTE							

- residential(1,000tCO₂, \$1,000/tCO₂)

- high cost with low potential
 - ; high marginal cost and high average cost

- transport(1,000tCO₂, \$1,000/tCO₂)

- mitigation potential is 7.5% of emission in 2020 ; passenger car has the biggest potential

sector	options	pote	ential	poten. vs. emission	
		potential	cum.	nat′l	sector
	private bus	-602	-602	-0.1%	-0.4%
transport	comm. bus	-14	-616	-0.1%	-0.4%
	private truck	-1,928	-2,544	-0.4%	-1.8%
	comm. truck	-1,191	-3,735	-0.6%	-2.6%
	taxi	-609	-4,344	-0.7%	-3.0%
	passenger car	-6,367	-10,711	-1.7%	-7.5%
sub			-10,711	-1.7%	-7.5%

- transport(1,000tCO₂, \$1,000/tCO₂)

- high marginal/average cost(\$3,237, \$2,281/tCO₂)

sector	options	potential	cum. potential	marg. cost	aver. cost
	private bus	-602	-602	0.018	0.018
	comm. bus	-14	-616	0.181	0.021
tuo o o o o ut	private truck	-1,928	-2,544	0.634	0.486
transport	comm. truck	-1,191	-3,735	0.693	0.552
	taxi	-609	-4,344	2.891	0.880
	passenger car	-6,367	-10,711	3.237	2.281
sub-total			-10,711	3.237	2.281

- transport(1,000tCO₂, \$1,000/tCO₂)

- high marginal/average cost

- national potential(1,000tCO₂, \$1,000/tCO₂)

- technological potential is 22.9% of emission in 2020
 - ; conversion(60.8%), commercial(20.4%), residential(7.5%), transport(7.4%), industry(3.7%)

sector	potential	potential vs. emission		share of potential
	cum.	nat′l	sector	nat'l
conversion	87,542	-13.9%	-32.8%	-60.8%
- power	86,989	-13.8%	-37.5%	-60.5%
- oil ref.	553	-0.1%	-4.4%	-0.4%
industry	5,383	-0.9%	-1.8%	-3.7%
- pet.chem	1,091	-0.2%	-1.9%	-0.8%
- cement	2,592	-0.4%	-16.0%	-1.8%
- automobile	196	0.0%	-5.5%	-0.1%
- paper	811	-0.1%	-12.3%	-0.6%
- iron & steel	693	-0.1%	-0.6%	-0.5%
residential	10,855	-1.7%	-13.1%	-7.5%
commercial	29,409	-4.7%	-34.1%	-20.4%
transport	10,711	-1.7%	-7.5%	-7.4%
total	143,900	-22.9%		-100%

- national(1,000tCO₂, \$1,000/tCO₂)

- high marginal/average cost

sector	cum. potential	marg. cost	aver. cost
conversion	-87,542		0.019
- power	-86,989		0.019
- oil ref.	-553		0.097
industry	-5,383		-0.019
- petro.chem	-1,091		0.092
- cement	-2,592		-0.027
- automobile	-196		-0.163
- paper	-811		-0.038
- iron & steel	-693		-0.101
residential	-10,855		1.818
commercial	-29,409		0.603
transport	-10,711		2.281
total	-143,900	228.418	0.441

- total(1,000tCO₂, \$1,000/tCO₂)

- low technological potential with high cost

- total(1,000tCO₂, \$1,000/tCO₂)

- reduction of 16.3% of emission under current carbon price(\$20-30/tCO₂)

cum. potential (1,000tCO ₂)	(%)	marg. cost (\$1,000/tCO ₂)	aver. cost (\$1,000/tCO ₂)
-6,098	-1.0%	-0.010	-0.086
-15,213	-2.4%	0.015	-0.026
-15,816	-2.5%	0.018	-0.024
-102,505	-16.3%	0.019	0.012
-104,153	-16.6%	0.181	0.015
-112,448	-17.9%	0.496	0.050
-143,900	-22.9%	228.418	0.441

Conclusion

- maximum technological mitigation potential is 22.9% of GHG emission in 2020
 - ; 16.3% under current carbon price(\$20-30/tCO2)
 - ; not sufficient for nat'l target of 30% reduction vs. BAU in 2020
- cost-effective mitigation with more R&D for technology development
 - ; achieve Green Growth with GDP and GHG reduction

Thank you

NOH, Dong-Woon

- Senior Research Fellow
- Director of Green Growth Research Group
- dwroh@keei.re.kr
- **031-420-2282**
- **010-9774-0578**