International Institute for Applied Systems Analysis (IIASA)

Externalities in the bottom-up energy system modeling framework

Analyses with the MARKAL model

Expert Workshop on Energy and Climate Change Modeling 17th of November 2011 Seoul, Korea

Scope

Definition of externalities

Methodology for internalisation of external costs

Scenario results & sensitivities

Combining externalities with other policies

Insights from modelling experiments

Externalities and energy system

I I A S A

External costs are introduced if

- the emissions from the energy system imply damages to the society
- the resulting costs are not included in the market price of energy

Internalisation of external costs intends to

- compensate for the health and environmental damages
- yield a full-cost pricing of energy services

Beside the air emissions, additional externality burdens are considered:

 solid and liquid wastes, risk of accidents, occupational exposure to hazardous substances, noise, others

Quantification and monetization of damages requires

- site-specific impact assessment of technologies
- comparisons between different energy chains and fuel cycles

External costs in the MARKAL framework

Different methods applicable:

- 1. Ex-post quantification of damages and valuation of impacts
 - no feedback into the optimisation
- 2. Externality charged to every unit of output

$$Z_{extern} = Z + \sum_{t} ExtCost_{t} * ypp * Q_{t} * (1+d)^{-1}$$

3. Damage function implying a tax on air emissions

$$DAM_{t,r} = \sum_{poll} DV_{t,r,poll} * EM_{t,r,poll}^{\beta}$$

Ex Post Analysis of Externalities using MARKAL

Impact pathway approach

Soft link interfaces MARKAL India MARKAL Pakistan Genenhouse gas-Air pollution Interactions and Synergies model ALPHA Atmospheric Long-range Pollution Health-environment Assessment ExternE, NEEDS

Economic Benefits of Climate Mitigation Policy Example India

Monetization of damages (€million/year)

Baseline	2030		
Ozone mortality	377		
Ozone morbidity	572		
PM _{2.5} mortality	227,442		
PM _{2.5} morbidity	86,655		
Total	315,046		

Low carbon	2030
Ozone mortality	304
Ozone morbidity	461
PM _{2.5} mortality	185,314
PM _{2.5} morbidity	70,605
Total	256,684
Co-benefit	58,362

Integration in the Global Markal Model (GMM)

Main features

"Bottom-up" techno-economic model → Explicit representation of technologies

Optimisation under perfect foresight assumptions

Time horizon 2000-2050, 10-year steps

Partial equilibrium → Elastic demands

Energy system of five world regions

Multi-regional trading of selected commodities

Endogenous technological learning

Learning spill-over across regions

Internalisation of externalities in power sector

Basic assumptions

- External costs from local pollution (SO₂, NO_x, PM) and/or CO₂ internalized in the power sector
- External costs for each power plant in ¢/kWh derived from the EU ExternE-Project
- Externalities adjusted for regional differences in population density, fuel quality, power-plant efficiency and application of emissioncontrol systems

Determinant for scaling	Unit	SO ₂	NO _x	PM	CO ₂
Average damage cost per pollutant	€ ₁₉₉₅ /t	8000	7000	14000	19
Population density adjustment factor (AF)	High	1.5	1.5	1.5	
	Medium	1	1	1	n.a.
	Low	0.75	0.75	0.75	
Reference thermal efficiency		coal	oil	natural gas	
	%	41	40	55	

Scaling of external costs

Options considered

1. Population density

- NAME, EEFSU, LAFM Medium
- ASIA, OOECD High

2. Improved conversion efficiency

$$ExtCost_{t} = ExtCost_{originalt=0} * \frac{\eta_{originalt=0}}{\eta_{t}}$$

3. Welfare in regions (GDP/cap)

$$ExtCost_{t,r} = ExtCost_{originalt,r} * \frac{GDP_{ppp,t}^{r}}{GDP_{ppp,t=0}^{EU}}$$

$$ExtCost_{t,r} = ExtCost_{originalt,r} * \frac{GDP_{mex,t}^{r}}{GDP_{mex,t=0}^{EU}}$$

Technology	External cost (cent/kWh)				
	excl CO ₂		incl CO ₂		
Fossil-fuel based power plants	min	max	min	max	
Coal conventional	8.1	19.0	9.8	20.8	
Coal conventional with DeSO _x /DeNO _x	1.2	1.8	2.9	3.6	
Coal conv. with DeSO _x /DeNO _x and CO ₂ seq	1.5	2.3	1.8	2.9	
Coal advanced	1.6	2.4	2.8	3.8	
Coal advanced with CO ₂ seq	1.8	2.8	1.9	3.0	
Coal IGCC	0.5	1.0	2.2	2.9	
Coal IGCC with CO ₂ seq	0.6	1.2	1.2	1.7	
Natural Gas Combined Cycle (NGCC)	0.3	1.1	8.0	1.7	
NGCC with CO ₂ sequestration	0.3	1.3	0.7	1.5	
Gas steam conventional	1.1	3.0	1.9	3.8	
Cogenaration gas turbine	1.2	2.3	2.2	3.3	
Oil conventional	1.3	5.9	2.5	7.2	
Non-fossil power plants					
Nuclear plant - Light Water Reactor (LWR)	0.5		0.5		
Hydro-electric plant (small and large)	0.1		0.1		
Solar photovoltaics (SPV)	0.1		0.3		
Wind turbine	0.1		0.1		
Biomass power plant	0.3		0.4		
Geothermal electric	0.1		0.4		

Total electricity generation cost analysis

Example Asia, year 2050
$$TGC = \frac{I*CRF}{Q} + \frac{FIXO \& M}{Q} + \frac{VARO \& M}{Q} + \frac{F}{Q} + \frac{F}{Q}$$

Development in global electricity production

Fuel mix changes due to integration of externalities

Impact on electricity generation profile

Technology portfolio in 2050

Global air emissions

CO₂ from all sources; SO₂/NO_x from power sector

 Alternative scaling of externalities with GDP results in lower cost penalty, still the impact on emissions is significant.

CO₂ emissions reduction components

Relative to the Baseline

Change in total system cost vs. Baseline (%)

Change in the cumulative energy system cost,

including external cost fraction

Synergies in combined policy adoption

Global CO₂ emission reductions

Cost and Benefit Assessment

Large uncertainties

Conclusions

- Monetary evaluation of the (co)benefits of emission control strategies provides relevant insights for decision makers
- Quantification of impacts based on MARKAL-inputs, but outside the optimization procedure, brings detailed assessment of a policy, when linked with dedicated air quality models (GAINS)
- Externalities integrated in the MARKAL's cost function allows to balance trade-offs between environmental ambition and the economic implications
- Modeling results indicate a large scope of co-benefits resulting from the parallel application of different policy instruments
- Monetization of health & environmental benefits are associated with a wide range of uncertainties and controversies
- If the externality analyses are used in an international policy context, it is challenging to attribute economic values to non-market goods: human life and ecosystems