

2012.12.18

이 유 수

에너지경제연구원

목 차

- I. 연구 배경 및 필요성
- Ⅱ. 국내 전원믹스 계획 및 정책
- Ⅲ. 포트폴리오 이론 및 적용 방법
- IV. 국내 전원믹스 계획 분석
- Ⅴ. 정책적 시사점

I. 연구 배경 및 필요성

① 1 l 연구 필요성 및 목적

① 연구의 배경

● 연구의 배경

- 안정적 전력공급을 위한 전원믹스 계획의 다각적 검토
 - 일본의 후쿠시마 원전사고로 원전의 안전성 논란과 회의적 시각 팽배
 - 국내 9.15 순환정전으로 인한 전력공급의 안정성 논의 중요
- 최근 국제 연료가격의 상승과 기술발전에 따른 비용 변화 요인 등의 불확실성 대비
 - 과거 에너지가격이 상대적으로 안정, 기술적 변화의 예측가능성
 - 전원구성의 최적화는 전체 전원구성의 비용최소화에 의존
 - 최근 에너지시장은 경쟁적 환경 하에서 가격변동 심화와 신규 에너지원 개발
 - 전력공급의 안정성 측면에서 연료비의 변동폭 증가 등 위험이 커짐
 - 과거 비용최소화로는 변동폭이 커진 상황을 반영한 전원믹스 계획 어려움

① 1 l 연구 필요성 및 목적

② 연구의 필요성

● 연구의 필요성

- 연료가격의 변동 및 기술적 변화 등 비용 변화의 위험을 반영하는 전원믹스 계획
 - 기대수익과 가격변동의 위험요인을 고려하는 포트폴리오 이론의 적용 필요
 - 변동성이 커진 에너지 환경적 요인을 반영하는 전원믹스 계획과 정책 필요
 - 전윈믹스 계획에서 연료가격 변동의 위험과 비용최소화를 동시에 고려
 - 연료조달의 어려움 완화와 대체 가능한 전원개발 등 종합적 전원믹스 계획
- 포트폴리오 이론 적용의 전원믹스 계획을 검토하여 미래의 불확실한 상황 대비
 - 기존 비용최소화 전원믹스 계획과 위험요인까지 고려한 전원믹스 계획 비교
 - 효율적 전원믹스 계획 수립을 위한 정책적 시사점 도출

Ⅱ. 국내 전원믹스 계획 및 정책

♠ 2 □ 국내 전원믹스 계획 및 정책

① 전원믹스 계획의 특징 및 현황

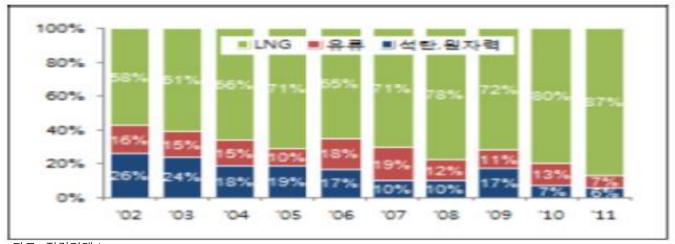
● 전원믹스 계획의 특징

- 발전원에 대한 전원믹스는 2년마다 정해지는 전력수급 기본계획에 의해 결정
- 전력산업 구조개편 이전 한전의 주도하에 전원믹스 계획 수립(최적화 전산모형)
- 이후 발전도매시장 형성으로 발전자회사와 민간사업자의 건설의향 반영
- 전원믹스 계획은 중앙집중적 계획방식과 시장기능 중심의 자율적 방식 혼재

● 전원믹스 계획의 현황

- 2012년 현재 용량기준 : 원자력 및 석탄 53%, LNG 및 석유 36%
- 2011년 발전량 기준 : 원자력(30.3%), 석탄(40.3%), LNG 및 석유(26.1%)
- 현재 수요의 과소예측으로 전체적 공급부족 현상 : 기저발전기의 부족 심각
- 첨두발전기인 가스발전기의 SMP 결정시간이 80%를 초과

() 2 I 국내 전원믹스 계획 및 정책


① 전원믹스 계획의 특징 및 현황

<우리나라 전원믹스의 변천(발전량 기준, 단위 %)>

	수력	석탄	석유	LNG	원자력	신재생
1978	0.00	12.76	75.08	4.79	7.38	0.00
1980	0.17	11.69	77.81	0.99	9.34	0.00
1990	1.56	20.90	16.75	11.54	49.25	0.00
2000	0.61	38.00	8.86	10.89	41.64	0.00
2010	0.59	41.85	3.57	21.69	31.36	0.95

자료 : KESIS

<전원별 SMP 결정 비중>

자료 : 전력거래소

♠ 2 □ 국내 전원믹스 계획 및 정책

② 전원믹스 계획의 수립방법

● 전원믹스 기준계획의 수립방법

- 전원믹스 기준계획은 WASP 등 전산프로그램 이용 15년간 최적 공급계획 수립
- 전산모형에 고려되는 입력자료들은 수요예측, 기존발전설비, 확정계획, 연료가격, 건설비용, 할인율 등 포함
- 주어진 부하를 최소비용으로 달성하는 방법을 찾기 때문에 미래 불확실성 관련 변수들을 반영하지 못하는 한계

● 사업자 건설의향 조사 및 평가

- 전력산업 구조개편 이후 전력수급 기본계획 수립시 발전소 건설 의향 접수
- 제출된 건설의향 중 일부만 실제 계획에 반영하여 정부가 과다투자로 인한 공급
 초과와 손실을 미리 차단하는 방식
- 그러나 과소투자로 인한 발전소 초과이윤에 대해서는 방지할 대책이 없음

igodelimits 2l 국내 전원믹스 계획 및 정책

③ 국내 전원믹스 계획의 문제와 개선방향

● 전원믹스 계획의 문제

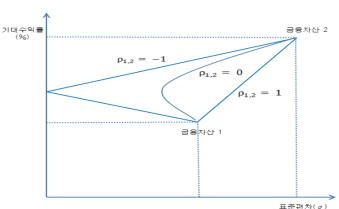
- 제한적 경쟁의 현 시스템에서 시장참여자들의 반응을 기존계획 수립에 미반영
 - 기준계획과 실제계획의 차이로 인한 공급부족 문제 발생 가능성
 - 발전사업자는 수요예측 축소로 공급부족 현상에 따른 이윤증가 추구
 - 소비자는 공급과잉에 따른 전력가격 감소로 편익향유 추구
 - 기준계획 수립시 어느 입장을 중요시하느냐에 따라 기준계획 수립원칙이 달라질 수 있음
- 전산모형 운용상의 문제로서 미래 수요예측과 다른 미래 변수들의 불확실성에 대한 처리 문제를 다루기 어려움

● 개선 방향

- 기준계획과 시장참여자들의 의사결정 차이는 평가와 선정과정에 시장기능 도입
- 장기적으로 개별 발전사업자들의 자율적 의사결정으로 전원믹스 결정 필요
- 전원믹스 계획에서 미래의 불확실한 변수들의 정확한 예측노력도 중요하지만 불확실성에 대비하여 최적 전원믹스 설계하는 것이 바람직

Ⅲ. 포트폴리오 이론 및 적용 방법

1 포트폴리오 이론 및 적용 방법 1 포트폴리오 이론의 정의


● 포트폴리오 이론의 정의

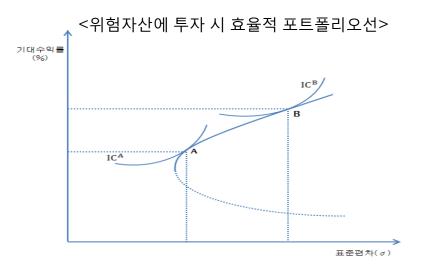
- 미래가 확실한 상황이라면 투자자가 수익률이 높은 자산 집중 선택
- 미래의 불확실한 상황 하에서 기대수익률을 극대화하기 위한 자산투자에 적용
- 투자자의 금융자산 선택은 미래 수익률과 위험의 발생도 중요한 투자기준
- 여러 자산에 분산투자하여 미래 불확실한 상황에서 투자손실의 위험을 완화

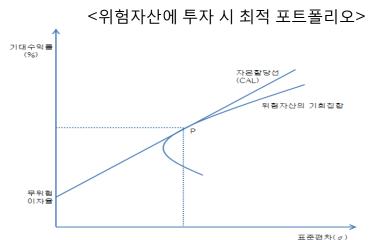
포트폴리오의 기대수익률과 분산

■ 기대 수익률 :
$$E(r_p) = \sum_{i=1}^n \omega_i \cdot E(r_i)$$
 (단, $\sum_{i=1}^n \omega_i = 1$)

- 분산(위험):
$$\sigma_p^2=E[r_p-E(r_p)]^2$$

$$=\sum_{i=1}^n\sum_{j=1}^n\omega_i\omega_jCov(r_i,r_j)$$
 (단 , $Cov(r_i,r_j)=\rho\sigma_i\sigma_j$)

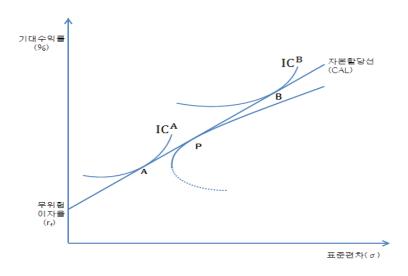



● 3 포트폴리오 이론 및 적용 방법

② 효율적 포트폴리오 도출

● 위험자산 투자 시 효율적 포트폴리오

- 포트폴리오를 구성하는 자산들의 투자기회 집합 중 지배원리 충족
- 동일한 기대수익률 하에서 분산이 작아서 낮은 위험을 달성하는 집합
- 동일한 위험(표준편차) 하에서 높은 기대수익률을 달성하는 집합
- 소비자들은 효율적 포트폴리오선과 접하는 점에서 효용을 극대화
- P점에서 최적 포트폴리오를 구성하여 금융자산의 비중 결정



() 3 Ⅰ 포트폴리오 이론 및 적용 방법

② 효율적 포트폴리오 도출

- 무위험 자산 포함 시 효율적 포트폴리오
 - 금융자산 선택에서 무위험 자산이 포함될 경우 위험자산의 최적 포트폴리오 선택후 무위험 자산과 최적 포트폴리오 사이에서 투자비중 결정
 - 무위험 자산이 존재할 경우 최적 포트폴리오 선택은 위험회피 성향에 의존
 - 위험회피성향이 강하면 무위험자산과 P에 분산투자

<위험자산과 무위험자산에 투자 시 최적 포트폴리오>

() 3 I 포트폴리오 이론 및 적용 방법

③ 포트폴리오 이론의 적용 방법

● 이론의 적용 근거

- 발전원의 구성에서 한 가지 전원에 집중될 경우 전력공급 중단의 위험
- 미래 불확실한 상황에서 다양한 발전설비의 적정 비중을 통한 설비계획
- 전체 전원믹스의 위험요인을 고려하면서 비용을 최소화하여 위험에 대응
- 부하패턴이나 부하량과 관계없이 전원구성의 비중 정도에 따라 전체 위험과 비용의 정도가 달라지므로 수요에 대한 정보반영이 어려운 한계

● 이론의 적용 방법

- 각 전원별 1단위 발전량에 대한 비용 추정으로 발전단가 도출
- 각 전원별 위험수준을 나타내는 분산(표준편차) 계산
- 전체 전원구성 포트폴리오의 기대배용과 표준편차를 구하여 효율적 프런티어 도출

IV. 국내 전원믹스 계획 분석

 σ^2

○4 Ⅰ국내 전원믹스 계획 분석

① 전원믹스 계획 분석을 위한 자료와 모형

● 분석을 위한 투입자료

- 분석대상 발전원은 원자력, 유연탄, 무연탄, 중유, 가스복합, 양수 발전소 등 6개
- 전원별 발전단가는 전체 운영기간에 대해 균등화하는 작업 필요
- 비용자료의 가공 및 입수의 어려움으로 발전원별 정산단가(전력거래소)를 대체

● 기대 발전비용과 분산

- 발전원별 정산단가의 평균을 기대비용으로 사용
- 비용자료를 이용하여 위험을 나타내는 발전단가의 분산 도출(연도별 비용흐름)
- 기대비용과 표준편차를 구하여 전체 전원믹스에서 기대비용과 위험 동시 고려

04 | 국내 전원믹스 계획 분석

① 전원믹스 계획 분석을 위한 자료와 모형

<전원별 기대 발전비용과 분산 및 표준편차>

	원자력	유연탄	무연탄	LNG	석유	양수
기대비용(원/kWh)	39.07	60.18	89.66	128.92	187.70	156.46
분산(💤)	0.0026	0.0107	0.0724	0.0227	0.0542	0.0346
표준편차(👨)	0.0506	0.1032	0.2690	0.1506	0.2327	0.1859

<발전원간 상관계수>

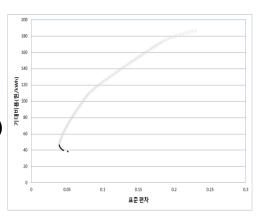
	원자력	유연탄	무연탄	LNG	석유	양수
원자력	1.000	-0.291	0.060	-0.019	0.326	0.723
유연탄	-0.291	1.000	0.565	0.257 0.194		-0.446
무연탄	0.060	0.565	1.000	0.755	0.746	0.340
LNG	-0.019	0.257	0.755	1.000 0.863		0.213
석유	0.326	0.194	0.746	0.863 1.000		0.487
양수	0.723	-0.446	0.340	0.213	0.487	1.000

()4 1 국내 전원믹스 계획 분석

① 전원믹스 계획 분석을 위한 자료와 모형

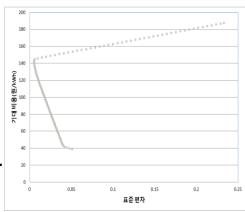
● 전원구성 포트폴리오의 최적화 문제

- 전원구성 포트폴리오의 위험을 나타내는 기대비용의 표준편차가 주어질 때 기대 비용을 최소화하는 가중치의 선택
- 전원구성 포트폴리오의 전체 기대비용은 각 개별 전원의 기대 발전비용에 각 전 원비중을 곱하여 합한 값과 동일
- 제약조건으로 전체 전원구성에 대한 분산의 일정한 목표치와 가중치의 합이 1이 되는 식이 주어짐


Min
$$E(C_p) = \sum_{i=1}^N \omega_i E(C_i)$$
 s.t. $\sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \rho_{ij} \sigma_i \sigma_j = \overline{\sigma_p^2}$ (분산의 목표치)
$$\sum_{i=1}^N \omega_i = 1 \ (\omega_i \geq 0 \ \text{for} \ i=1,2,....,N)$$

() 4 1 국내 전원믹스 계획 분석

② 전원믹스 계획의 분석 결과


● 발전원에 대한 효율적 전원믹스

- 효율적 프런티어에서 전원믹스의 기대비용이 가장
 낮은 점(39.1원)은 원자력발전, 표준편차는 가장 높음
- 위험이 가장 최소인 점(0.04)은 원자력(73%), 유연탄(24%) LNG(3%) 순임

● 신재생전원 포함 발전원에 대한 효율적 전원믹스

- 이전 경우보다 기대비용은 더욱 증가, 표준편차는 더 하락
- 전원믹스의 기대비용이 가장 낮고, 표준편차가 가장 높은
 점은 원자력발전이 100%일 때와 동일
- 원자력 발전비중 줄고, 유연탄과 신재생전원의 비중 증가로
 기대비용은 증가하지만 위험은 더욱 하락

() 4 1 국내 전원믹스 계획 분석

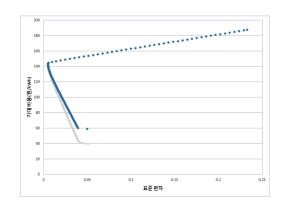
② 전원믹스 계획의 분석 결과

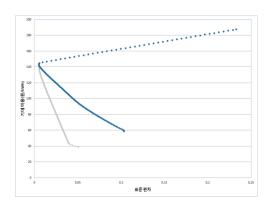
- 기존 전원믹스 계획(5차 전력수급 기본계획)과 비교
 - 2010년 발전비중과 효율적 프런티어선의 발전비중 비교(기존 기대비용, 위험 높음)
 - 2024년 발전비중과 효율적 프런티어선의 발전비중 비교(기존 기대비용, 위험 높음)
 - 2024년 전원믹스 계획은 2010년에 비해 원자력 및 신재생전원의 발전비중이 높아 질 계획이지만 이들 비중을 더 높임으로써 전원믹스의 위험수준 개선 여지

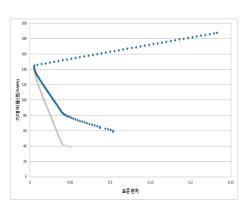
<기존 전원믹스 계획과 전원믹스의 효율적 프런티어선의 비교(단위:%)>

	원자력	유연탄	무연탄	LNG	중유	양수	신재생
기존(2010년)	31.4	41	9	21.8	3.2	0.5	1.3
효율선	53.7	16.2	0.0	0.0	0.0	0.0	30.1
기존(2024년)	48.5	31.0		9.7	0.5	1.3	8.9
효율선	60.1	18.1	0.0	0.0	0.0	0.0	21.9

() 4 1 국내 전원믹스 계획 분석


③ 비용변화 시나리오 분석


● 원자력 발전에 대한 비용수준 변화


- 원전의 사회적 비용반영 여부에 따라서 현재보다는 기대비용의 상승 가능성
- 일본은 원자력 발전에 대한 비용재산정에서 사용후 핵연료 처리, 사고위험 비용 등을 포함하여 한한값 제시, 상한값은 제시하지 않음

● 원자력 발전의 비용상승 시나리오

- ①유연탄 발전, ②LNG 발전, ③유연탄과 LNG 발전의 평균수준과 동일할 경우
- 원자력 발전의 기대비용이 증가할수록 동일한 기대비용 하에서 위험수준은 증가

() 4 Ⅰ 국내 전원믹스 계획 분석

③ 비용변화 시나리오 분석

● 온실가스 감축에 따른 비용상승분 적용

- 온실가스 감축에 따른 비용상승분을 화석연료 발전에 적용
- 배출권 거래가격을 ①25,000원/CO₂톤, ②50,000원/CO₂톤을 적용할 경우
- 이전과 비교하면 동일한 기대비용 하에서 위험수준은 더 높아짐

배출권 거래가격(25,000원) 적용 시

- 기대비용은 유연탄, 원자력(평균 비용적용), 무연탄, LNG 발전순으로 높음
- 온실가스 감축비용 적용 전과 비교하면 기대비용 크기 순서는 변화가 없으나 비용만 상승하였으며, 동일한 기대비용 하에서 위험수준은 더 높음

배출권 거래가격(50,000원) 적용 시

- 기대비용은 원자력, 유연탄, 무연탄, LNG 발전순으로 높음
- 유연탄 발전원의 기대비용이 원자력보다 높아짐에 따라 가장 낮은 기대비용 하의 위험 수준은 ①보다 더 높아짐

V. 정책적 시사점

05 | 정책적 시사점

① 분석결과 종합 및 정책적 시사점

● 분석결과 종합

- 기존 전원믹스 계획에 비해서 원자력과 신재생 전원의 비중확대를 통한 효율성 달성 가능
- 원자력 발전의 경우 기대비용이 월등히 낮으면서 연료가격의 변동에 따른 위험수준도 낮아서이와 같은 결과 도출
- 신재생 전원은 기대비용은 높지만 개별 전원별 위험 수준이 가장 낮아서 어느 정도 비중증대로 효율적 전원믹스 구성 가능
- 원자력 발전의 경우 사회적 비용을 종합적으로 고려하면 현재보다 상향될 가능성
- 온실가스 감축비용을 적용하면 전원별 기대비용 상승과 전체 전원믹스의 위험수준이 높아짐
- 전원별 기대비용의 산정에 의한 크기에 따라 위험수준의 관리와 전원별 구성에 영향을 미침

● 정책적 시사점

- 전원별 사회적 발전비용을 종합적으로 검토하는 체계 필요
- 발전비용의 정확한 추산에 근거하여 미래 불확실성에 따른 위험을 고려한 전원믹스 계획필요
- 신규 에너지기술 발전과 비전통자원의 개발 등에 따른 비용변화를 주목
- 전원믹스 계획과 관련한 전기요금의 반영 및 사회적 수용성에 대한 문제 검토

05 | 정책적 시사점

① 분석결과 종합 및 정책적 시사점

● 전원별 사회적 발전비용의 종합적 검토

- 기존 전원믹스 계획은 발전원의 건설 및 운영과 관련된 직접 비용만을 고려 산정
- 전원별 자체 비용뿐 아니라 사회적 비용까지 반영할 경우 전원믹스 구성에 영향을 미침

● 미래 불확실성에 대비한 전원믹스 계획

- 향후 세계적 에너지환경은 국제유가를 포함하여 에너지연료 가격의 변동성 심화 예상
- 미래 불확실한 에너지환경을 고려하여 연료가격 변화의 위험에 대한 대비차원의 전원믹스 계획 필요

● 신규 에너지기술 및 비전통자원 개발에 주목

- 신규 기술개발에 따른 설비의 효율향상과 비용감소에 영향
- 에너지 저장장치 개발 및 상업화, 비전통 셰일가스의 도입 등에 따른 장기적 전원믹스 변화 주목

● 전기요금 및 사회적 수용성

- 전기요금에 대한 전원별 공급비용의 반영여부가 전원믹스 계획에 영향을 미침
- 전원별 공급비용을 전기요금에 반영하되 사회적 수용성이 용이하다면 이에 따른 전원믹스 계획의 변화 여지

감사합니다.

