Policies to Enhance the Safety and Public Acceptance of Nuclear Power Plants in Korea

2014. 9

Roh, Dong-Seok

Table of contents

- 1. Current status and prospects
- 2. Safety
- 3. Public Acceptance
- 4. Policies to enhance the safety & PA

Current status and prospects

(the 2nd energy master plan)

- A total number of 34 plants(36GW) will operate until 2024
 - A total number of 23 plants are in operation as of July 2014
 - 5 plants under construction, and 6 plants planned
- The total capacity of 2035 is expected to be 147GW, and the nuclear capacity will reach 43GW
- Uncertainty related with nuclear capacity
 - The 14 plants (12GW) will be ended their lifetime unless life extension

Reasons for expansion of nuclear power plants

- Influential contribution to national energy security in a situation of absolute insufficiency of energy resources and non-connection of electric network between countries
 - Experience of the second oil shock threatening the country's dependence on oil
- Reliable alternatives for decrease of green house gas emissions
- Substantial economic advantages according to the evaluation result of levelized cost

Levelized cost (the 2nd energy basis plan, CF 80%)

unit: won/kWh Nuclear power Coal Gas Construction cost 25.03 16.32 10.66 O & M cost 18.16 5.73 4.69 Fuel cost 3.16 40.28 104.21 Total 46.86 62.33 119.57

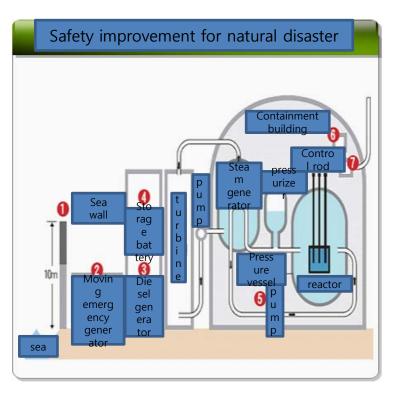
- Increase in difficulties of achieving the goal of nuclear plant expansion
 - Public acceptances of nuclear power decrease due to the public's growing concern about safety
 - Difficulties of building transmission line due to demand for large-capacity transmission network

International Nuclear Event Scale(IAEA)

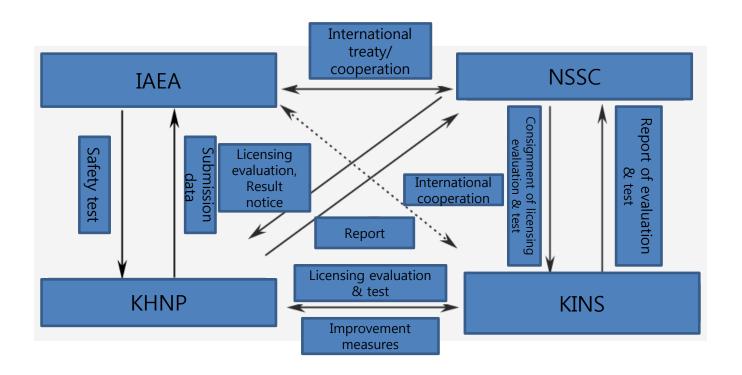
Leve I	Definition	People and environment	Defence in depth	Example	
7	Major accident	Major release of radio active material with widespread healt h and environmental effects requiring implementation of pla nned and extended countermeasures	Major release of radio active material with widespr ead health and environmental effects requiring im plementation of planned and extended counterme asures	Chernobyl, Ukraine, 1986 / FUKUSHIMA 1, 2011 Major release of radio active mate rial with widespread health and environm ental effects requiring implementation of planned and extended countermeasures	
6	Serious accident	Significant release of radioactive material likely to require i mplementation of planned countermeasures,	Significant release of radioactive material likely to require implementation of planned countermeasur es,	Kyshtym, Russia, 1957	
5	Accident with w ider consequenc es	Limited release of radioactive material likely to require imple mentation of some planned countermeasures Several deaths from radiation		Windscale, UK, 1957; Three Mile Island, 1 979	
4	Accident with lo cal consequenc es	Minor release of radioactive material unlikely to result in im plementation of planned countermeasures other than local food controls, At least one death from radiation,			
3	Serious incident	Exposure in excess of ten times the statutory annual limit for workers, Non-lethal deterministic health effect (e.g., burns) from radi	Near accident at a nuclear power plant with no safety provisions remaining, Lost or stolen highly radioactive sealed source, Misdelivered highly radioactive sealed source with out adequate procedures in place to handle it,	Sellafield, UK, 2005	
2	Incident	Exposure of a member of the public in excess of 10mSv Exposure of a worker in excess of the statutory annual limits	Significant failures in safety provisions but with no actual consequences, Found highly radioactive sealed orphan source, de vice or transport package with safety provisions in tact, Inadequate packaging of a highly radioactive seale d source,	Atucha, Argentina, 2005	
1	Anomaly		Overexposure of a member of the public in excess of statutory annual limits, Minor problems with safety components with signif icant defence-in-depth remaining, Low activity lost or stolen radioactive source, device or transport package		

System for securing safety of nuclear plants

Design Base


1	Construction & Operation	obtaining licensing of operation through PSAR, FSAR		
2	Regular test	safety confirmation through performance and operation test during O/H		
3	PSR for each	Periodic safety review for each decade		
	Decade			
4	Safety test for life e xtension	PSR, assessment of NSSS lifetime, assessment of radiological impact		

Beyond Design Base


(5)	Measures after Fu kushima	emergency plan for earthquake, flood, serious accident, tsunami
6	Stress test	disaster prevention and emergency plan of earthquake, flood, serious accident

Measures for safety improvement after Fukushima

- ☐ Implementation of safety tests on nuclear plants and introduction of safety improvement Investment after the Fukushima Daiichi nuclear reactor accident
 - KHNP carrying out 50 improvement measures
- ☐ Implementation of 50 short and long term measures
 - ① Increase building of sea wall of the Gori nuclear plant from 7.5m to 10m
 - 2) Prepare the generator car nuclear site
 - ③ Install waterproof doors blocking water flow into emergency diesel generators
 - 4 Secure emergency storage battery in floodingresisting locations
 - (5) Application of waterproofing of pumps
 - ⑤ Install hydrogen removal equipment operating without electricity and prevention of hydrogen explosion
 - ① Install exhaust and depressurization equipment blocking pressure increase of containment vessel
 - >> invest around 1.1 trillion won for 5 years

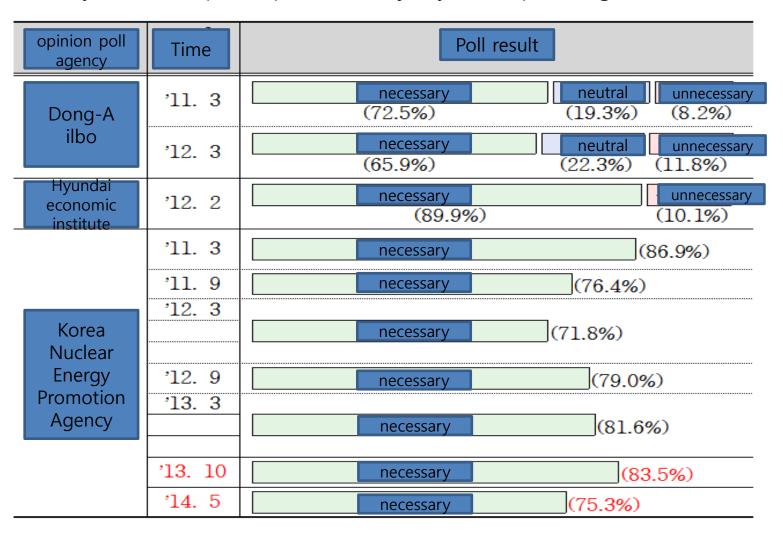
Safety management system

- NSSC: Nuclear safety and security commission
- KHNP: Korea Hydro & Nuclear Power Co., LTD
- KINS : Korea Institute of Nuclear Safety

Disaster prevention system of nuclear plants

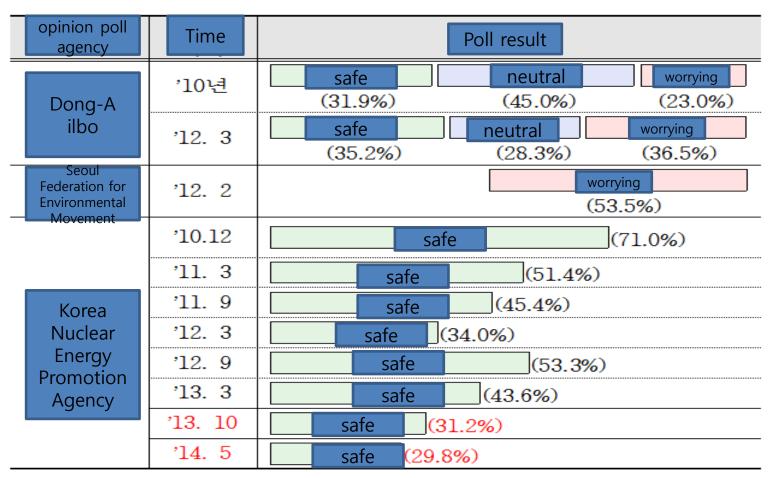
Category	Organizations for emergency	Functions / roles			
NSSC	Central radiation disaster prevention measures center	Control of national radiation disaster			
NSSC	On-site radiation disaster prevention control center	Radiation disaster control and management			
Local governments	Provincial radiation disaster prevention measures center	Implementation of resident protection measures (evacuation, etc)			
KINS	Radiation protection technical service center	Technical support for recovery of radiation disaster -radiation exploration and prevention measures against radiation pollution			
Institute of radiological & medical sciences	Radiation emergency medical service center	Medical treatment for radiation victims			
nuclear plants	Emergency operation facility of nuclear plants	Prevention measures against accident within nuclear facilities, & recovery activities and information provision			

Efforts to improve safety

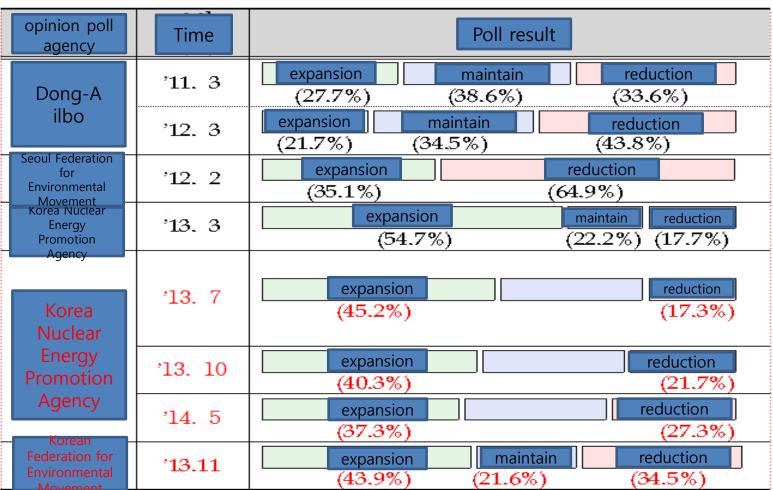

 Analysis result of composite index of WANO(World Association of Nuclear Operators) safety and performance (as of December 2012)

Countries	China	Korea	USA	Ukra i ne	India	France	Canada	Sweden
Points	92.5	91.5	89.0	82.9	79.1	75.2	73.5	68.3

- Increase safety equipment of operating and serious accident
 - Decrease Core Damage Frequency (CDF) to 1.0E-5/RY
- Newly developed APR+
 - Decrease CDF to 1.0E-6/RY


Result of public opinion poll - Necessity

O Necessity of nuclear power plants : a majority of the public agrees with it


Result of public opinion poll - Safety

 Safety of nuclear plants: the public concerns growing after nuclear accident of the Fukushima Daiichi reactors

Result of public opinion poll – capacity ratio

 Proportion of nuclear plants: the results vary depending on opinion poll agency and contents of question

Implementation of policies for improving safety/public acceptance

- Increase independence of regulatory agency and expertise of the agency's officials
- Expansion of disclosure about the information including nuclear plant operation data, and provision of related procedures
 - ※ Japan: publicized process of "Innovative Energy Environment Strategy"
 - Information provision DB, hearing of public opinion, survey of public opinion (poll survey in discussion style), etc.
 - * the U.S.: NRC
 - Real time broadcast of conference, disclosure of conference schedule and conference recording on the internet website
 - Decide the degree of the public's participation by defining it as category 1, 2, 3 based on conference subjects
- Measures for recovery of reliability of nuclear operators
 - Expand external audit of NGO
 - Carry out policies for safety improvement including personnel reorganization and innovation of organization culture
 - Eradication of corruption
 - Ban on retirees' reemployment for subcontractors
 - Quality improvement including innovation of part purchase
 - ✓ Real time monitoring of material purchase · management
 - ✓ Introduction of the competitive part purchase system
 - ✓ Part quality test by the third institution, etc.

Thank you