NEW MARKET AND FUTURE PROSPECT OF PV INDUSTRY: THE ROLE OF ACCURATE PERFORMANCE MEASURES

Wilhelm Warta

Fraunhofer Institute for Solar Energy Systems ISE

World Green Energy Forum 2014 Gyeongju, 2014.10.22

The Fraunhofer-Gesellschaft

Largest Organization for Applied Research in Europe

66 institutes and independent research units Staff of more than 22,000 €1.9 billion annual research budget totaling International cooperation

Fraunhofer-Institute for Solar Energy Systems ISE

Areas of business:

- Photovoltaics (Si, CPV, OPV)
- Solar Thermal (ST, CST)
- Renewable Power Generation
- Energy-Efficient Buildings & Technical Building Components
- Applied Optics and Functional Surfaces
- Hydrogen Technology

16% basic financing
84% contract research
29% industry, 55% public
€ 87 M budget (2013)

Department Characterisation and Simulation/CalLab Cells Division Solar Cells – Development and Characterisation Topics

Costs of Solar Energy Price Learning Curve (all c-Si PV Technologies)

Price Learning Curve of PV Module Technologies since 1980.

Source: Navigant Consulting; EUPD PV module prices (since 2006), Graph: PSE AG 2012

Average Price for Rooftop PV Installations in Germany (10 kWp - 100 kWp)

Harvesting Solar Energy: Photovoltaics (PV) PV Production Development by Technology

Production 2012 (MW_p/a

Thin film	3.224
Ribbon-Si	100
Multi-Si	10.822
Mono-Si	9.751

Outline

- Accurate performance measures: Why are they needed and how can they be realized?
- Highly efficient silicon solar cells with low complexity
 - Summary of future developments
 - Challenges for performance measurements: Bifaciality, contacting
- Emerging technologies and their measurement challenges
 - Perovskite cells
 - Multi-junction cells
 - III-V concentrator cells
 - Organic cells

Thin film technologies (CdTe, CIGS, a-Si...) not discussed

Outline

- Accurate performance measures: Why are they needed and how can they be realized?
- Highly efficient silicon solar cells with low complexity
 - Summary of future developments
 - Challenges for performance measurements: Bifaciality, contacting
- Emerging technologies and their measurement challenges
 - Perovskite cells
 - Multi-junction cells
 - III-V concentrator cells
 - Organic cells

Thin film technologies (CdTe, CIGS, a-Si...) not discussed

World Market Outlook: Experts are Optimistic **Example Sarasin Bank, November 2010**

market forecast: 30 GW_p in 2014, 110 GW_p in 2020 annual growth rate: in the range of 20 % and 30 %

Increasing Economic Impact of Measurement Uncertainty IEA Outlook on PV Production Worldwide

- Rapidly declining cost of PV generated electricity opens up new market opportunities.
- Current 45 GWp/a market will increase to a 100+ GWp/a market in 2020; for 2050 IEA expects more than 3000 GWp of globally installed PV capacity; for only 10 % of energy demand we need more than 10,000 GWp!

Huge economic impact of uncertainty: ±1% of 45 GWp/a PV world production

ESTIMATED ANNUAL COMPOUND GROWTH OF PV INDUSTRY

± 450 Mill. €

Competitive world market needs precise power comparability

Why is Accuracy of PV Cell Calibration a Challenge? Solid Basis: Standard Testing Conditions (STC, IEC 60904)

- Main sources of measurement uncertainty:
 - Spectral dependent values
 - Large areas

Example: Uncertainty of Reference Calibration (I_{sc}) Traceability Chain at ISE CalLab PV Cells

Economic view: Contributions > 0.1 % count!

Outline

- Accurate performance measures: Why are they needed and how can they be realized?
- Highly efficient silicon solar cells with low complexity
 - Summary of future developments
 - Challenges for performance measurements: Bifaciality, contacting
- Emerging technologies and their measurement challenges
 - Perovskite cells
 - Multi-junction cells
 - III-V concentrator cells
 - Organic cells

Thin film technologies (CdTe, CIGS, a-Si...) not discussed

Trend 1: Highly Efficient Solar Cells with Low Complexity

Highly Efficient Solar Cells with Low Complexity State-of-the-Art Silicon Solar Cell

- Current reality in PV
- 91 % silicon
- 62 % multi crystalline p-type silicon
 - > 90 % Al-BSF cells

Will there be a transition to the more complex n-type BJBC with passivated contacts?

http://www.solarbuzz.com/news/recent-findings/multicrystalline-silicon-modules-dominate-solar-pv-industry-2014

19

© Fraunhofer ISE

 \rightarrow High efficient solar cells reduces your system cost

Large fraction of system cost scale with the **solar cell** efficiency

Why Going to High Efficiencies? **System costs**

Share of Balance of System costs (BOS) increases from 31 % in 2006 to now about 50 %

Module 22% Cell 12% 8,5% Wafer 7,5% Poly-Si

Why Going to High Efficiencies? Levelized Cost of Electricity (LCOE)

- What really matters are the Levelized Cost of Electricity (LCOE)
- To rate new solar cell concepts, they have to be compared with the LCOE of the p-type mc Al-BSF cell

Reference system:

- p-type mc Al-BSF cell
- Cell efficiency 18,5 %
- 900 kWh/kWp, 25 years

LCOE~10 €ct/kWh

Why Going to High Efficiencies? **Efficiency versus Cost**

What are the allowed additional costs in cell production to get the same LCOE Simplified assumption: All system costs (except inverter) scale with efficiency

More detailed model: S.Nold et al., EUPVSEC 2012

Why Going to High Efficiencies? Efficiency versus Cost - Efficiency Gap

- Which solar cell concepts can fill the efficiency gap between p-Type mc Al-BSF and the world record cells?
- Is there an economical maximum?

Solar Cell Concept to Close the Gap p-Type PRC – The Evolutionary Path

- Replacement of the full area Al-BSF with a partial rear contact (PRC)
- Two additional process steps
 - Dielectric passivation
 - Local contact opening (LCO) or Laser fired contact (LFC)
- Advantage: Can be used for mc und Cz silicon

Solar Cell Concept to Close the Gap p-Type PRC – The Evolutionary Path

- Due to the large ptype capacity we will see an increase in efficiency
- Key developments are an improved emitter and metallization
- Bulk lifetime become a limiting factor for Cz PRC cells

Solar Cell Concept to Close the Gap n-Type PERT – Bifacial or Monofacial

Two configurations:

- Bi-facial with printed contacts on both side
- Different concepts for the realization of diffused regions

Mono-facial with different contact technologies

Solar Cell Concept to Close the Gap n-Type PERT – Bifacial or Monofacial

Solar Cell Concept to Close the Gap n-Type Heterojunction – A "simple" cell structure

- Lean process flow
- Highly efficient carrier selective contacts
- High V_{oc} and low T_k
- High efficiencies for thin wafers

Solar Cell Concept to Close the Gap n-Type Heterojunction – A "simple" cell structure

- High efficiencies are proven
- Rear emitter configuration looks promising
- Metallization is still an issue
- Cost efficient large scale production
 >1 GWp has to be shown

Solar Cell Concept to Close the Gap n-Type BJBC– without "passivated contacts"

- Large volume production by Sunpower since more than 10 years
- Developments of new technology equipment offers new process routes
 - In situ masked ion implantation
 - Laser doping

Solar Cell Concept to Close the Gap n-Type BJBC– without "passivated contacts"

Solar Cell Concept to Close the Gap n-Type Hybrid TOPCon Cell – TOPCon layer

Solar Cell Concept to Close the Gap n-Type PRC and TOPCon

250 PassDop and TOPCon normalised cost of cell production [%] PRC PassDop OPCon approach offer a concept for 22 % and 200 above Advanced metallization 2 is necessary to fully 150 exploit the potential 90 Ż 100 18 20 22 24 26

cell efficiency [%]

Solar Cell Concept to Close the Gap What will we get in the "near" Future?

Outline

- Accurate performance measures: Why are they needed and how can they be realized?
- Highly efficient silicon solar cells with low complexity
 - Summary of future developments
 - Challenges for performance measurements: Bifaciality, contacting
- Emerging technologies and their measurement challenges
 - Perovskite cells
 - Multi-junction cells
 - III-V concentrator cells
 - Organic cells

Thin film technologies (CdTe, CIGS, a-Si...) not discussed

Challenges for High Efficiency Cell Calibration Bifacial Cells

Comparable measurements of bifacial cells require definition of background

Challenges for High Efficiency Cell Calibration Performance Gain of Bifacial Devices

- Bifacial modules on a white roof: up to 30% more power output
- How can investors calculate the LCOE of a bifacial installation?
- Proposals in literature for
 - measurement setups, e.g. [2]
 - definitions of figures of merit e.g. [3]
- Internationally agreed standards urgently needed!

[1] bSolar 2012
 [2] M. Ezquer et al. 23rd EU-PVSEC Valencia 2008
 [3] J.P. Singh et al. solmat 127, 2014

Challenges for PV Cell Calibration Chuck Development for Back Contacted Solar Cells

- Concept for concurrent realization of thermal and electrical contact
- No front glass for
 - tactile temperature measurement
 - unaffected radiation
- Iow lateral temperature variation under 1000W/m² steady state
- Universal chuck for a wide variety of contacting schemes available

M. Glatthaar, J. Hohl-Ebinger, A. Krieg, M. Greif, L. Greco, F. Clement, S. Rein, W. Warta, and R. Preu, 25th EUPVSEC. 2010. Valencia, Spain

 Back contact silicon solar cells promise high efficiency potential

- Back contact silicon solar cells promise high efficiency potential
- Require designs with different current per pad or busbar for the same polarity

- Back contact silicon solar cells promise high efficiency potential
- Require designs with different current per pad or busbar for the same polarity
- Contact resistances can lead to non-negligible potential inhomogeneities during I-V measurement
 - → FF measurement errors [1]

[1] C. Schinke et al., 10.1109/JPHOTOV.2012.2195637

- Balancing resistors [1]
 - Dominating contact and external circuit resistance
 - Adjusted so that voltage drop from terminal to pad/busbar is equal for all contact points

[1] R. Sinton, bifi PV workshop, Konstanz, 2012

41

Balancing resistors [1]

- Dominating contact and external circuit resistance
- Adjusted so that voltage drop from terminal to pad/busbar is equal for all contact points
- Tested for different resistor balancing configurations and voltage sensing schemes [2]

```
cell with IBB1 = IBB3 = ½ IBB2
```


[1] R. Sinton, bifi PV workshop, Konstanz, 2012

[2] I. Geisemeyer et al., EUPVSEC 2014, Amsterdam

42

- I-V simulations and measurements for different V sensing schemes[1]
 - Dominating but equal balancing resistors of 0.1 Ω
 - FF underestimation of 12%_{abs} overestimation of 3.5%_{abs}
 - Cell with 25.0 % efficiency measured as 26.0%!

- I-V simulations and measurements for different V sensing schemes[1]
 - Dominating but equal balancing resistors of 0.1 Ω
 - FF underestimation of 12%_{abs} overestimation of 3.5% abs
 - ➡ Cell with 25.0% efficiency measured as 26.0%!
- Only with adjusted balancing resistors
 - applied voltage equal at all contacting points
 - sense contacting scheme does not influence FF

Outline

- Accurate performance measures: Why are they needed and how can they be realized?
- Highly efficient silicon solar cells with low complexity
 - Summary of future developments
 - Challenges for performance measurements: Bifaciality, contacting
- Emerging technologies and their measurement challenges
 - Perovskite cells
 - Multi-junction cells
 - III-V concentrator cells
 - Organic cells

Thin film technologies (CdTe, CIGS, a-Si...) not discussed

Organic PV Devices (OPV): Physical properties Fundamentally different from conv. inorganic PV devices

Property	Germanium	Anthracene
Atomic Weight	72.63	178.22
Melting Point (°C)	937	217
Density (g(cm ³)	5.3	1.28
Density (molecules/cm ³)	4.42x10 ²²	0.42x10 ²²
Crystal Strcture	Diamond	Monoclinic
Dielectric Constant	16	3.2
e-Mobility at 300K (cm²/√s)	3800	1.06
h-Mobility at 300K (cm²/√s)	1800	1.31
Concentration of intrinsic carriers (cm ⁻³)	5.2x10 ¹³	~101
Vacuum Ionisation Energy (eV)	4.8	5.8

Anthacene data from W. Warta et al., Phys. Rev. B 32, 1172 (1985) Slide 5

DPG Frühjahrstagung 2011 Dresden

Moritz Riede

Fraunhofer ISE

46

Dye Sensitized Solar Cells – Principle Example: Conv. liquid electrolyte cell

S. Glunz, IMTEC, 2013

Dye Sensitized to Perovskite Solar Cells – Principle Mesoporous Conductor

- Strong efficiency gain with Perovskite as dye
- Perovskite cell works also with non-conducting (Al₂O₃) mesoporous and planar layer
- Key: Blocking layers to separate electron-hole pairs

Time dependence effects in DSSC measurements Hysteresis of IV measurements on Perovskite cells

- Previously: IV of DSSC correct if measured slowly
- Conv. DSSC with perovskite absorber: behaves similar (Dualeh et al. 2013)

Time dependence effects in DSSC measurements Hysteresis of IV measurements on Perovskite cells

- Previously: IV of DSSC correct if measured slow
- Conv. DSSC with perovskite absorber: behaves similar (Dualeh et al. 2013)
- Different types of hysteresis reported with strong dependence on architecture of perovskite cell (Snaith et al. 2014)

Planar structure Snaith et al. J. Phys. Chem. Lett. 2014

Time dependence effects in DSSC measurements Hysteresis of IV measurements on Perovskite cells

- Previously: IV of DSSC correct if measured slow
- Conv. DSSC with perovskite absorber: behaves similar (Dualeh et al. 2013)
- Different types of hysteresis reported with strong dependence on architecture of perovskite cell (Snaith et al. 2014)

MSSC (with mesoporous Al_2O_3) Snaith et al. J. Phys. Chem. Lett. 2014

Organic PV devices (OPV): Principle Example: Polymer Cell

Organic PV Decvices (OPV) – Principle Example: Polymer Cell

Bulk heterojunction structure

Organic PV Devices (OPV): Principle Variants

- Absorber polymer solution processed, e.g. by printing
 - Room temperature process, high speed
- Absorber small molecules vacuum sublimation
 - High purity
 - Allows complex structures

Organic solar cells: Principle Development Directions

- Absorber polymer solution processed, e.g. by printing
 - Room temperature process, high speed
- Absorber small molecules vacuum sublimation
 - High purity
 - Allows complex structures
- Multi-junction cells:

Path to competitive efficiencies

Outline

- Accurate performance measures: Why are they needed and how can they be realized?
- Highly efficient silicon solar cells with low complexity
 - Summary of future developments
 - Challenges for performance measurements: Bifaciality, contacting
- Emerging technologies and their measurement challenges
 - Perovskite cells
 - Multi-junction cells
 - III-V concentrator cells
 - Organic cells

Thin film technologies (CdTe, CIGS, a-Si...) not discussed

Calibration of Multi-Junction Cells III-V (Concentrator) Devices

Advantage of Two-Axis Tracking in CPV: Land Use

2014: SOITEC SOLAR builds a 300 MW CPV installation, using the new 150 MW_p/yr factory near San Diego, CA!

Calibration of Multi-Junction Cells High Demand on Measurement Technique

Internal series connection

Individual subcells not accessible directly

Principle of current limitation:

$$I_{MJ} = Min\{I_i\} \qquad V_{MJ} = \sum_i V_i$$

Calibration of Multi-Junction Cells Spectral Response Measurement

Calibration of Multi-Junction Cells Spectral Response Measurement

AlGalnP

AlGaInAs

active Ge

1117-quint

GalnP

GalnAs

Bias irradiation: Excess generation in all cells apart from the one to be measured imiting cell

130 nm

450 nm

400 nm

1600 nm

150 µm

Calibration of Multi-junction devices IV measurement at Multi-Source-Simulator (MuSim)

Six Source Sun Simulator X-Sim Spectrum of the Light Channels

- Xenon flash tube
- Filter transmission with a sharp separation of the spectral ranges
- Spectral ranges based on the SR of a ISE 6-junction solar cell

Six Source Sun Simulator X-Sim Spectrum of the Light Channels

- Xenon flash tube
- Filter transmission with a sharp separation of the spectral ranges
- Spectral ranges based on the SR of a ISE 6-junction solar cell
- Intensity of each LC independently adjustable

Six Source Sun Simulator X-Sim Spectral Correction

Six Source Sun Simulator X-Sim Simulator Spectrum

- Reference spectrum AM0
- Sum of spectra of all LCs in the measurement plane

Calibration of Organic multi-junction devices Spectral Response Measurement

- Bias irradiation dependence
 - Spectral overlap of absorbers: identification of artifacts difficult
 - Irradiation dependence of limiting cell hard to determine

 \rightarrow Knowledge of corresponding single cells needed

Calibration of Organic Multi-Junction Devices Spectral Response Measurement

Bias voltage dependencies

- Bias voltage dependence due to field assisted charge separation
- Bias voltage variation at actual bias light conditions for uncertainty estimation

How to Assure International Comparability? Calibration Labs Accredited to ISO 17025

- Comparable IV-curve parameters important competition measure
- Key: Traceability to SI-units
- Assured by calibration labs accredited according to ISO 17025
 - extensive, audited uncertainty calculation
 - regular proficiency test: inter-comparison with other calibration labs (NREL, AIST, JRC, KIER?)

Test labs can also have accreditation to ISO 17025, but

- do not need to implement uncertainty calculations
- do not necessarily assure traceability of measured results to SI-units and international comparability

Summary

- Future prospect of silicon solar cells:
 High efficiency cells with low complexity
- Rear contacted and bifacial cells will play an increasing role
- Agreed way how to valuate the gain of bifaciality urgently needed
- Faulty contacting of rear contacted cells can lead to marked errors
- Perovskite cells: Metastability has enormous influence on IV-results
- Multi-junction cells: Strong expertise available, but challenges high especially for organic devices

Acknowledgment

Parts on high efficiency silicon solar cells and III-V-multi-junction cells courtesy of Martin Hermle and Gerald Siefer, respectively Contributions from Holger Seifert, Jochen Hohl-Ebinger

Thank You for Your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Wilhelm Warta

www.ise.fraunhofer.de wilhelm.warta@ise.fraunhofer.de

