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Fraunhofer-Institute for Solar Energy Systems ISE

Largest European Solar Energy Research Institute

About 1300 members of staff (incl. students)

Areas of business:

• Photovoltaics (Si, CPV, OPV)

• Solar Thermal  (ST, CST)

• Renewable Power Generation 

• Energy-Efficient Buildings & 

Technical Building Components

• Applied Optics and Functional

Surfaces

• Hydrogen Technology

16% basic financing

84% contract research

29% industry, 55% public

€ 87 M budget (2013) 
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Department Characterisation and Simulation/CalLab Cells 
Division Solar Cells – Development and Characterisation
Topics

SimulationMethod
Development

Advanced Cell
Characterization

Material 
Evaluation

Defect Analysis

CalLab PV Cells
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World EnergyRessources

2 – 6 per year

2010 World energy 
use: 16 TWy  per year
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Costs of Solar Energy
Price Learning Curve (all c-Si PV Technologies)

Learning Rate:
Each time the cumulative 
production doubled, the price 
went down by 20 %. 

Source: Navigant Consulting; EUPD PV module prices (since 2006), Graph: PSE AG 2012

Price Learning Curve of PV Module Technologies since 1980.
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Average Price for Rooftop PV Installations in Germany 
(10 kWp - 100 kWp)

Levelized Cost of Electricity
of 0,10-0,15 €/kWh

Source: BSW-Solar, Graph: PSE AG 2013
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Harvesting Solar Energy: Photovoltaics (PV) 
PV Production Development by Technology

Produktion 2012 (MWp/a)

Thin film        3.224

Ribbon-Si         100

Multi-Si        10.822

Mono-Si         9.751

Daten: Navigant Consulting. Graph: PSE AG 2013

Production 2012 (MWp/a)
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Why are they needed and how can they be realized?

 Highly efficient silicon solar cells with low complexity

 Summary of future developments

 Challenges for performance measurements: 
Bifaciality, contacting

 Emerging technologies and their measurement challenges

 Perovskite cells

 Multi-junction cells

 III-V concentrator cells

 Organic cells

Thin film technologies (CdTe, CIGS, a-Si…) not discussed
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World Market Outlook: Experts are Optimistic 
Example Sarasin Bank, November 2010

market forecast: 30 GWp in 2014, 110 GWp in 2020 
annual growth rate: in the range of 20 % and 30 %

Newly installed (right)

Annual growth rate (left)
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ca. 46 GWp,   
50 % above
forecast!

Total new installations (right scale)
Annual growth (left scale)
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Increasing Economic Impact of Measurement Uncertainty
IEA Outlook on PV Production Worldwide

 Rapidly declining cost of 
PV generated electricity opens 
up new market opportunities. 

 Current 45 GWp/a market will 
increase to a 100+ GWp/a market 
in 2020; for 2050 IEA expects 
more than 3000 GWp of globally 
installed PV capacity; for only 
10 % of energy demand we need 
more than 10,000 GWp!

Huge economic impact of uncertainty:
±1% of 45 GWp/a PV world production ± 450 Mill. €

Competitive world market needs precise power comparability
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Why is Accuracy of PV Cell Calibration a Challenge?
Solid Basis: Standard Testing Conditions (STC, IEC 60904)

Spectral distribution 

AM1.5G

Temperature 25°C 

Irradiance 1000 W/m²
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 Xe DC simulator

 Main sources of 
measurement uncertainty:

 Spectral dependent 
values

 Large areas
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Example: Uncertainty of Reference Calibration (ISC)
Traceability Chain at ISE CalLab PV Cells 

Planck spectrum, small diode

Synthetic irradiation, small cell

Simulator irradiation, large area

Economic view: 
Contributions > 0.1 % count!

Cryoradiometer < 0.01%

Photodiode < 0.1%

Encapsulated

2x2 cm²Solar Cell < 0.7%

Industrial

Solar Cell < 2.0%
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Company Technology Material Area 
[cm²]

Efficiency

UNSW
J.Zhao, APL 73 1998 

PERL p-type FZ 4 25.0 %

Trend 1: Highly Efficient Solar Cells with Low Complexity

World Record for Mono c-Si Solar Cells

Sunpower
D. Smith, IEEE 40th 
PVSC 2014 

„passivated contact“ 
BJBC

n-type Cz 121 25.0 %

Sharp
J.Nakamura, IEEE 
40th PVSC 2014

a-Si:H Heterojunction
BJBC

n-type  Cz 3,72 25.1 %

Panasonic
K. Masuko, IEEE 
40th PVSC 2014

a-Si:H Heterojunction
BJBC

n-type Cz 143,7 25.6 %
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Highly Efficient Solar Cells with Low Complexity
State-of-the-Art Silicon Solar Cell

 Current reality in PV

 91 % silicon 

 62 % multi crystalline 
p-type  silicon 

 > 90 % Al-BSF cells

http://www.solarbuzz.com/news/recent-findings/multicrystalline-silicon-modules-dominate-solar-pv-industry-2014

Will there be a transition to the more complex n-type BJBC with passivated 
contacts?
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 Share of Balance of 
System costs (BOS) 
increases from 31 % 
in 2006 to now 
about 50 % 

 Large fraction of 
system cost scale 
with the solar cell 
efficiency

Why Going to High Efficiencies?
System costs 

 High efficient solar cells 
reduces your system cost

http://www.itrpv.net/
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Why Going to High Efficiencies?
Levelized Cost of Electricity (LCOE)

 What really matters are the Levelized Cost of 
Electricity (LCOE)

 To rate new solar cell concepts, they have to be 
compared with the LCOE of the p-type mc Al-BSF 
cell

 Reference system: 

 p-type mc Al-BSF cell

 Cell efficiency 18,5 % 

 900 kWh/kWp, 25 years

LCOE~10 €ct/kWh

SDE/Texture

POCl diffusion

Edge Isolation

PSG etching

SiN ARC

SP Ag FS

Drying & Firing

SP Al/Ag RS
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Why Going to High Efficiencies?
Efficiency versus Cost

What are the allowed 
additional costs in cell 
production to get the 
same LCOE 

Simplified assumption: All 
system costs (except 
inverter) scale with 
efficiency

+18 %

19.5 %

Higher LCOE

Lower LCOE

More detailed model:  S.Nold et al. , EUPVSEC 2012
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Why Going to High Efficiencies?
Efficiency versus Cost  - Efficiency Gap
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n-type Cz
World 
Record

????

 Which solar cell 
concepts can fill the 
efficiency gap between 
p-Type mc Al-BSF and 
the world record cells?

 Is there an economical 
maximum? 
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Solar Cell Concept to Close the Gap
p-Type PRC – The Evolutionary Path

SDE/Texture

POCl diffusion

Edge Isolation

PSG etching

SiN ARC

SP Ag FS

Drying & Firing

SP Al/Ag RS

Al2O3/ SiN RS

Laser Opening

 Replacement of the full 
area Al-BSF with a partial 
rear contact (PRC)

 Two additional process 
steps 

 Dielectric passivation

 Local contact opening 
(LCO) or Laser fired 
contact (LFC)

 Advantage: Can be used 
for mc und Cz silicon
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Solar Cell Concept to Close the Gap
p-Type PRC – The Evolutionary Path
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 Due to the large p-
type capacity we will 
see an increase in 
efficiency

 Key developments are 
an improved emitter 
and metallization 

 Bulk lifetime become 
a limiting factor for Cz 
PRC cells
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Solar Cell Concept to Close the Gap
n-Type PERT – Bifacial or Monofacial

Two configurations:  

 Bi-facial with printed contacts on 
both side

 Different concepts for the 
realization of diffused regions

 Mono-facial with different 
contact technologies

Printed contacts

Boron emitter

Passivation + ARC

Phosphorus BSF

p-Typ Sin-Typ Si

Passivation layerPrinted contacts

p-Typ Sin-Typ Si

Boron emitter

Phosphorus BSF

Passivation layer
PVD rear contact

Front sides contacts Passivation + ARC
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Solar Cell Concept to Close the Gap
n-Type PERT – Bifacial or Monofacial
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 Bifacial cells currently 
limited by the 
metallization

 Bifacial cells allow 
higher energy yield  
 lower LCOE

 Rear emitter 
configuration offers 
high efficiency 
potential for Mono-
facial design
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Solar Cell Concept to Close the Gap
n-Type Heterojunction – A “simple” cell structure

from: D.Bätzner Silicon PV  2014

Texture

TCO front

Curing

SP Ag VS

i/p-a-Si

i/n-a-Si

TCO rear

PVD Al rear

Cleaning

 Lean process flow

 Highly efficient carrier 
selective contacts

 High Voc and low Tk

 High efficiencies for thin 
wafers
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Solar Cell Concept to Close the Gap
n-Type Heterojunction – A “simple” cell structure

Hetero-
junction
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 High efficiencies 
are proven 

 Rear emitter 
configuration 
looks promising

 Metallization is still 
an issue 

 Cost efficient large 
scale production 
>1  GWp has to be 
shown
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Solar Cell Concept to Close the Gap
n-Type BJBC– without “passivated contacts”

 Large volume production by Sunpower
since more than 10 years

 Developments of new technology 
equipment offers new process routes

 In situ masked ion implantation

 Laser doping
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Solar Cell Concept to Close the Gap
n-Type BJBC– without “passivated contacts”

B
JB

C

 Ion Implantation offers 
new routes for BJBC 
cell production

 New approach 
“Blocking of 
boron diffusion by 
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 Tunnel oxide passivated 
contact (TOPCon)

 Tunnel oxide using wet 
chemical or UV/O3 growth 

 PECVD single side deposition 
of amorphous Si layer

 Furnace Anneal + H-
passivation

n-base

20 nm Si(n)

~14 Å  SiOx

J0,n-TOPCon 7 fA/cm²

Solar Cell Concept to Close the Gap
n-Type Hybrid TOPCon Cell – TOPCon layer

F. Feldmann et al  SOLMAT 120 2014

c-Si(n)SiOx

0 % 100 %Layer crystallinity

a-Si layer 

(tuneable crystallinity)
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Solar Cell Concept to Close the Gap
n-Type PRC and TOPCon

 PassDop and TOPCon
approach offer a 
concept for 22 % and 
above

 Advanced metallization 
is necessary to fully 
exploit the potential
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Solar Cell Concept to Close the Gap
What will we get in the “near” Future?

??
Central role of
 Bifacial cells
 Rear Contacted Cells
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Challenges for High Efficiency Cell Calibration

Bifacial Cells

Solar Cell

Chuck
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 Comparable measurements of bifacial cells require definition of background
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Challenges for High Efficiency Cell Calibration

Performance Gain of Bifacial Devices

 Bifacial modules on a white roof: up to 

30% more power output

 How can investors calculate the LCOE 

of a bifacial installation?

 Proposals in literature for

 measurement setups, e.g. [2]

 definitions of figures of merit e.g. [3]

 Internationally agreed standards 

urgently needed!

[1] bSolar 2012 
[2] M. Ezquer et al. 23rd EU-PVSEC Valencia 2008
[3] J.P. Singh et al. solmat 127, 2014

[1]

[2]
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Challenges for PV Cell Calibration

Chuck Development for Back Contacted Solar Cells

 Concept for concurrent realization 

of thermal and electrical contact

 No front glass for 

 tactile temperature 

measurement

 unaffected radiation

 low lateral temperature variation 

under 1000W/m² steady state

 Universal chuck for a wide variety 

of contacting schemes available

M. Glatthaar, J. Hohl-Ebinger, A. Krieg, M. Greif, L. Greco, F. Clement, 
S. Rein, W. Warta, and R. Preu, 25th EUPVSEC. 2010. Valencia, Spain
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Large area back contact solar cells

Calibrated I-V measurements

 Back contact silicon solar cells 

promise high efficiency potential

IBC concept
Interdigitated Back Contact

MWT
Metal Wrap Through
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 1 3 𝐼0 2 3 𝐼0

Large area back contact solar cells

Calibrated I-V measurements

 Back contact silicon solar cells 

promise high efficiency potential

 Require designs with different 

current per pad or busbar for the 

same polarity

IBC concept
Interdigitated Back Contact

MWT
Metal Wrap Through
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 1 3 𝐼0 2 3 𝐼0

Large area back contact solar cells

Calibrated I-V measurements

 Back contact silicon solar cells 

promise high efficiency potential

 Require designs with different 

current per pad or busbar for the 

same polarity

 Contact resistances can lead 

to non-negligible potential 

inhomogeneities during I-V 

measurement

FF measurement errors [1] 

IBC concept
Interdigitated Back Contact

MWT
Metal Wrap Through

Rcontact

[1] C. Schinke et al., 10.1109/JPHOTOV.2012.2195637

terminal
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 1 3 𝐼0 2 3 𝐼0

Large area back contact solar cells

Calibrated I-V measurements

 Balancing resistors [1]

 Dominating contact and external 

circuit resistance

 Adjusted so that voltage drop from 

terminal to pad/busbar is equal for 

all contact points

BJBC concept
Interdigitated Back Contact

MWT
Metal Wrap Through

Rcontact

Rbalancea b

terminal

[1] R. Sinton, bifi PV workshop, Konstanz, 2012 
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Large area back contact solar cells

Calibrated I-V measurements

 Balancing resistors [1]

 Dominating contact and external 

circuit resistance

 Adjusted so that voltage drop from 

terminal to pad/busbar is equal for 

all contact points

 Tested for different resistor balancing 

configurations and voltage sensing 

schemes [2]

 cell with IBB1 = IBB3 =  ½  IBB2

[1] R. Sinton, bifi PV workshop, Konstanz, 2012 
[2] I. Geisemeyer et al., EUPVSEC 2014, Amsterdam
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Large area back contact solar cells

Calibrated I-V measurements

 I-V simulations and measurements 

for different V sensing schemes[1]

 Dominating but equal balancing 

resistors of 0.1 Ω

 FF underestimation of 12%abs

overestimation of 3.5%abs

Cell with 25.0 % efficiency 

measured as 26.0%!

[1] I. Geisemeyer et al., EUPVSEC 2014, Amsterdam

Simulation Experiment
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Large area back contact solar cells

Calibrated I-V measurements

 I-V simulations and measurements 

for different V sensing schemes[1]

 Dominating but equal balancing 

resistors of 0.1 Ω

 FF underestimation of 12%abs

overestimation of 3.5%abs

Cell with 25.0% efficiency 

measured as 26.0%!

 Only with adjusted balancing 

resistors

 applied voltage equal at all 

contacting points

 sense contacting scheme 

does not influence FF

Simulation Experiment

[1] I. Geisemeyer et al., EUPVSEC 2014, Amsterdam
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Organic PV Devices (OPV): Physical properties
Fundamentally different from conv. inorganic PV devices
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Dye Sensitized Solar Cells – Principle
Example: Conv. liquid electrolyte cell

S. Glunz, IMTEC, 2013
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Dye Sensitized to Perovskite Solar Cells – Principle
Mesoporous Conductor

S. Glunz, IMTEC, 2013

 Strong efficiency gain with Perovskite as dye

 Perovskite cell works also with non-conducting (Al2O3) mesoporous
and planar layer

 Key: Blocking layers to separate electron-hole pairs
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Time dependence effects in DSSC measurements
Hysteresis of IV measurements on Perovskite cells

 Previously: IV of DSSC correct if 
measured slowly

 Conv. DSSC with perovskite absorber: 
behaves similar (Dualeh et al. 2013)
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Time dependence effects in DSSC measurements
Hysteresis of IV measurements on Perovskite cells

 Previously: IV of DSSC correct if 
measured slow

 Conv. DSSC with perovskite absorber: 
behaves similar (Dualeh et al. 2013)

 Different types of hysteresis reported 
with strong dependence on 
architecture of perovskite cell 
(Snaith et al. 2014)

Planar structure
Snaith et al. J. Phys. Chem. Lett. 2014
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Time dependence effects in DSSC measurements
Hysteresis of IV measurements on Perovskite cells

 Previously: IV of DSSC correct if 
measured slow

 Conv. DSSC with perovskite absorber: 
behaves similar (Dualeh et al. 2013)

 Different types of hysteresis reported 
with strong dependence on 
architecture of perovskite cell 
(Snaith et al. 2014)

MSSC (with mesoporous Al2O3)
Snaith et al. J. Phys. Chem. Lett. 2014
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Organic PV devices (OPV): Principle
Example: Polymer Cell

S. Glunz, IMTEC, 2013 Photon creates exciton –
excitonic solar cell
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Organic PV Decvices (OPV) – Principle
Example: Polymer Cell

S. Glunz, IMTEC, 2013
Bulk heterojunction structure

Charge transfer
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Organic PV Devices (OPV): Principle
Variants

 Absorber polymer – solution processed, e.g. by printing

 Room temperature process, high speed

 Absorber small molecules – vacuum sublimation

 High purity

 Allows complex 
structures 

M. Riede, DPG Dresden, 2011
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Organic solar cells: Principle
Development Directions

 Absorber polymer – solution processed, e.g. by printing

 Room temperature process, high speed

 Absorber small molecules – vacuum sublimation

 High purity

 Allows complex 
structures

 Multi-junction cells:

Path to competitive 
efficiencies
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Outline

 Accurate performance measures: 
Why are they needed and how can they be realized?

 Highly efficient silicon solar cells with low complexity

 Summary of future developments

 Challenges for performance measurements: 
Bifaciality, contacting

 Emerging technologies and their measurement challenges

 Perovskite cells

 Multi-junction cells

 III-V concentrator cells

 Organic cells

Thin film technologies (CdTe, CIGS, a-Si…) not discussed
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Calibration of Multi-Junction Cells
III-V (Concentrator) Devices

2014:  SOITEC SOLAR  
builds a 300 MW CPV 
installation, using the
new 150 MWp/yr factory
near San Diego, CA!

Advantage of Two-Axis Tracking in CPV: Land Use
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Calibration of Multi-Junction Cells
High Demand on Measurement Technique

 Internal series connection

 Individual subcells not accessible directly

 Principle of current limitation:

  
i

iMJiMJ VVIMinIGe

GaInAs

GaInP
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Calibration of Multi-Junction Cells
Spectral Response Measurement

middle-cell

top-cell

filtered bias lamps

bottom-cell

chopped

monochromatic

light

I-V-converter

bias voltage
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Spectral Response Measurement
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 Adjust so that each cell delivers STC-current

 Settings calculated from spectral response of 
each junction 

Calibration of Multi-junction devices
IV measurement at Multi-Source-Simulator (MuSim)
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Six Source Sun Simulator X-Sim
Spectral Correction
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Six Source Sun Simulator X-Sim
Simulator Spectrum

 Reference 
spectrum AM0

 Sum of spectra
of all LCs in the 
measurement plane
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Calibration of Organic multi-junction devices
Spectral Response Measurement

 Bias irradiation dependence

 Spectral overlap of absorbers: identification of artifacts difficult

 Irradiation dependence of limiting cell hard to determine

 Knowledge of corresponding single cells needed
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Calibration of Organic Multi-Junction Devices
Spectral Response Measurement

 Bias voltage dependencies

 Bias voltage dependence due to field assisted charge separation

 Bias voltage variation at actual bias light conditions for uncertainty 
estimation 
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How to Assure International Comparability?
Calibration Labs Accredited to ISO 17025

 Comparable IV-curve parameters important competition measure

 Key: Traceability to SI-units

 Assured by calibration labs accredited according to ISO 17025

 extensive, audited uncertainty calculation

 regular proficiency test: inter-comparison
with other calibration labs (NREL, AIST, JRC, KIER?)

 Test labs can also have accreditation to ISO 17025, but

 do not need to implement uncertainty calculations

 do not necessarily assure traceability of measured results to SI-units
and international comparability
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Summary

 Future prospect of silicon solar cells: 
High efficiency cells with low complexity

 Rear contacted and bifacial cells will play an increasing role

 Agreed way how to valuate the gain of bifaciality urgently needed

 Faulty contacting of rear contacted cells can lead to marked errors

 Perovskite cells: Metastability has enormous influence on IV-results

 Multi-junction cells: Strong expertise available, but challenges high 
especially for organic devices
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