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Fraunhofer-Institute for Solar Energy Systems ISE

Largest European Solar Energy Research Institute

About 1300 members of staff (incl. students)

Areas of business:

• Photovoltaics (Si, CPV, OPV)

• Solar Thermal  (ST, CST)

• Renewable Power Generation 

• Energy-Efficient Buildings & 

Technical Building Components

• Applied Optics and Functional

Surfaces

• Hydrogen Technology

16% basic financing

84% contract research

29% industry, 55% public

€ 87 M budget (2013) 
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Department Characterisation and Simulation/CalLab Cells 
Division Solar Cells – Development and Characterisation
Topics

SimulationMethod
Development

Advanced Cell
Characterization

Material 
Evaluation

Defect Analysis

CalLab PV Cells
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World EnergyRessources

2 – 6 per year

2010 World energy 
use: 16 TWy  per year

COAL

Uranium 

900
Total reserve

90-300
Total

Petroleum 

240
Total

Natural Gas

215
Total

WIND

Waves
0.2-2 per year

60-120
per year

OTEC

Biomass 

3 -11 per year

HYDRO 

3 – 4 per year

TIDES 

SOLAR
23,000 per year

Geothermal
0.3 – 2 per year

©  R. Perez et al.

0.3 per year2050:  28 TW

finiterenewable

World Energy Ressources (TWyear)
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Costs of Solar Energy
Price Learning Curve (all c-Si PV Technologies)

Learning Rate:
Each time the cumulative 
production doubled, the price 
went down by 20 %. 

Source: Navigant Consulting; EUPD PV module prices (since 2006), Graph: PSE AG 2012

Price Learning Curve of PV Module Technologies since 1980.
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Average Price for Rooftop PV Installations in Germany 
(10 kWp - 100 kWp)

Levelized Cost of Electricity
of 0,10-0,15 €/kWh

Source: BSW-Solar, Graph: PSE AG 2013
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Harvesting Solar Energy: Photovoltaics (PV) 
PV Production Development by Technology

Produktion 2012 (MWp/a)

Thin film        3.224

Ribbon-Si         100

Multi-Si        10.822

Mono-Si         9.751

Daten: Navigant Consulting. Graph: PSE AG 2013

Production 2012 (MWp/a)
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 Accurate performance measures: 
Why are they needed and how can they be realized?

 Highly efficient silicon solar cells with low complexity

 Summary of future developments

 Challenges for performance measurements: 
Bifaciality, contacting

 Emerging technologies and their measurement challenges

 Perovskite cells

 Multi-junction cells

 III-V concentrator cells

 Organic cells

Thin film technologies (CdTe, CIGS, a-Si…) not discussed
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World Market Outlook: Experts are Optimistic 
Example Sarasin Bank, November 2010

market forecast: 30 GWp in 2014, 110 GWp in 2020 
annual growth rate: in the range of 20 % and 30 %

Newly installed (right)

Annual growth rate (left)
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ca. 46 GWp,   
50 % above
forecast!

Total new installations (right scale)
Annual growth (left scale)
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Increasing Economic Impact of Measurement Uncertainty
IEA Outlook on PV Production Worldwide

 Rapidly declining cost of 
PV generated electricity opens 
up new market opportunities. 

 Current 45 GWp/a market will 
increase to a 100+ GWp/a market 
in 2020; for 2050 IEA expects 
more than 3000 GWp of globally 
installed PV capacity; for only 
10 % of energy demand we need 
more than 10,000 GWp!

Huge economic impact of uncertainty:
±1% of 45 GWp/a PV world production ± 450 Mill. €

Competitive world market needs precise power comparability
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Why is Accuracy of PV Cell Calibration a Challenge?
Solid Basis: Standard Testing Conditions (STC, IEC 60904)

Spectral distribution 

AM1.5G

Temperature 25°C 

Irradiance 1000 W/m²

AM1.5g
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 Main sources of 
measurement uncertainty:

 Spectral dependent 
values

 Large areas
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Example: Uncertainty of Reference Calibration (ISC)
Traceability Chain at ISE CalLab PV Cells 

Planck spectrum, small diode

Synthetic irradiation, small cell

Simulator irradiation, large area

Economic view: 
Contributions > 0.1 % count!

Cryoradiometer < 0.01%

Photodiode < 0.1%

Encapsulated

2x2 cm²Solar Cell < 0.7%

Industrial

Solar Cell < 2.0%
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Company Technology Material Area 
[cm²]

Efficiency

UNSW
J.Zhao, APL 73 1998 

PERL p-type FZ 4 25.0 %

Trend 1: Highly Efficient Solar Cells with Low Complexity

World Record for Mono c-Si Solar Cells

Sunpower
D. Smith, IEEE 40th 
PVSC 2014 

„passivated contact“ 
BJBC

n-type Cz 121 25.0 %

Sharp
J.Nakamura, IEEE 
40th PVSC 2014

a-Si:H Heterojunction
BJBC

n-type  Cz 3,72 25.1 %

Panasonic
K. Masuko, IEEE 
40th PVSC 2014

a-Si:H Heterojunction
BJBC

n-type Cz 143,7 25.6 %



©  Fraunhofer ISE 

18

Highly Efficient Solar Cells with Low Complexity
State-of-the-Art Silicon Solar Cell

 Current reality in PV

 91 % silicon 

 62 % multi crystalline 
p-type  silicon 

 > 90 % Al-BSF cells

http://www.solarbuzz.com/news/recent-findings/multicrystalline-silicon-modules-dominate-solar-pv-industry-2014

Will there be a transition to the more complex n-type BJBC with passivated 
contacts?



©  Fraunhofer ISE 

19

 Share of Balance of 
System costs (BOS) 
increases from 31 % 
in 2006 to now 
about 50 % 

 Large fraction of 
system cost scale 
with the solar cell 
efficiency

Why Going to High Efficiencies?
System costs 

 High efficient solar cells 
reduces your system cost

http://www.itrpv.net/
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Why Going to High Efficiencies?
Levelized Cost of Electricity (LCOE)

 What really matters are the Levelized Cost of 
Electricity (LCOE)

 To rate new solar cell concepts, they have to be 
compared with the LCOE of the p-type mc Al-BSF 
cell

 Reference system: 

 p-type mc Al-BSF cell

 Cell efficiency 18,5 % 

 900 kWh/kWp, 25 years

LCOE~10 €ct/kWh

SDE/Texture

POCl diffusion

Edge Isolation

PSG etching

SiN ARC

SP Ag FS

Drying & Firing

SP Al/Ag RS
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Why Going to High Efficiencies?
Efficiency versus Cost

What are the allowed 
additional costs in cell 
production to get the 
same LCOE 

Simplified assumption: All 
system costs (except 
inverter) scale with 
efficiency

+18 %

19.5 %

Higher LCOE

Lower LCOE

More detailed model:  S.Nold et al. , EUPVSEC 2012
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Why Going to High Efficiencies?
Efficiency versus Cost  - Efficiency Gap
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F
 

n-type Cz
World 
Record

????

 Which solar cell 
concepts can fill the 
efficiency gap between 
p-Type mc Al-BSF and 
the world record cells?

 Is there an economical 
maximum? 
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Solar Cell Concept to Close the Gap
p-Type PRC – The Evolutionary Path

SDE/Texture

POCl diffusion

Edge Isolation

PSG etching

SiN ARC

SP Ag FS

Drying & Firing

SP Al/Ag RS

Al2O3/ SiN RS

Laser Opening

 Replacement of the full 
area Al-BSF with a partial 
rear contact (PRC)

 Two additional process 
steps 

 Dielectric passivation

 Local contact opening 
(LCO) or Laser fired 
contact (LFC)

 Advantage: Can be used 
for mc und Cz silicon
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Solar Cell Concept to Close the Gap
p-Type PRC – The Evolutionary Path
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 Due to the large p-
type capacity we will 
see an increase in 
efficiency

 Key developments are 
an improved emitter 
and metallization 

 Bulk lifetime become 
a limiting factor for Cz 
PRC cells
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Solar Cell Concept to Close the Gap
n-Type PERT – Bifacial or Monofacial

Two configurations:  

 Bi-facial with printed contacts on 
both side

 Different concepts for the 
realization of diffused regions

 Mono-facial with different 
contact technologies

Printed contacts

Boron emitter

Passivation + ARC

Phosphorus BSF

p-Typ Sin-Typ Si

Passivation layerPrinted contacts

p-Typ Sin-Typ Si

Boron emitter

Phosphorus BSF

Passivation layer
PVD rear contact

Front sides contacts Passivation + ARC
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Solar Cell Concept to Close the Gap
n-Type PERT – Bifacial or Monofacial
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 Bifacial cells currently 
limited by the 
metallization

 Bifacial cells allow 
higher energy yield  
 lower LCOE

 Rear emitter 
configuration offers 
high efficiency 
potential for Mono-
facial design
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Solar Cell Concept to Close the Gap
n-Type Heterojunction – A “simple” cell structure

from: D.Bätzner Silicon PV  2014

Texture

TCO front

Curing

SP Ag VS

i/p-a-Si

i/n-a-Si

TCO rear

PVD Al rear

Cleaning

 Lean process flow

 Highly efficient carrier 
selective contacts

 High Voc and low Tk

 High efficiencies for thin 
wafers



©  Fraunhofer ISE 

28

Solar Cell Concept to Close the Gap
n-Type Heterojunction – A “simple” cell structure

Hetero-
junction
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 High efficiencies 
are proven 

 Rear emitter 
configuration 
looks promising

 Metallization is still 
an issue 

 Cost efficient large 
scale production 
>1  GWp has to be 
shown
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Solar Cell Concept to Close the Gap
n-Type BJBC– without “passivated contacts”

 Large volume production by Sunpower
since more than 10 years

 Developments of new technology 
equipment offers new process routes

 In situ masked ion implantation

 Laser doping
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Solar Cell Concept to Close the Gap
n-Type BJBC– without “passivated contacts”

B
JB

C

 Ion Implantation offers 
new routes for BJBC 
cell production

 New approach 
“Blocking of 
boron diffusion by 
implanted phosphorus” 
further reduces the 
process complexity n
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 Tunnel oxide passivated 
contact (TOPCon)

 Tunnel oxide using wet 
chemical or UV/O3 growth 

 PECVD single side deposition 
of amorphous Si layer

 Furnace Anneal + H-
passivation

n-base

20 nm Si(n)

~14 Å  SiOx

J0,n-TOPCon 7 fA/cm²

Solar Cell Concept to Close the Gap
n-Type Hybrid TOPCon Cell – TOPCon layer

F. Feldmann et al  SOLMAT 120 2014

c-Si(n)SiOx

0 % 100 %Layer crystallinity

a-Si layer 

(tuneable crystallinity)
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Solar Cell Concept to Close the Gap
n-Type PRC and TOPCon

 PassDop and TOPCon
approach offer a 
concept for 22 % and 
above

 Advanced metallization 
is necessary to fully 
exploit the potential
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Solar Cell Concept to Close the Gap
What will we get in the “near” Future?

??
Central role of
 Bifacial cells
 Rear Contacted Cells
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Thin film technologies (CdTe, CIGS, a-Si…) not discussed
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Challenges for High Efficiency Cell Calibration

Bifacial Cells

Solar Cell

Chuck
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 Comparable measurements of bifacial cells require definition of background
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Challenges for High Efficiency Cell Calibration

Performance Gain of Bifacial Devices

 Bifacial modules on a white roof: up to 

30% more power output

 How can investors calculate the LCOE 

of a bifacial installation?

 Proposals in literature for

 measurement setups, e.g. [2]

 definitions of figures of merit e.g. [3]

 Internationally agreed standards 

urgently needed!

[1] bSolar 2012 
[2] M. Ezquer et al. 23rd EU-PVSEC Valencia 2008
[3] J.P. Singh et al. solmat 127, 2014

[1]

[2]
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Challenges for PV Cell Calibration

Chuck Development for Back Contacted Solar Cells

 Concept for concurrent realization 

of thermal and electrical contact

 No front glass for 

 tactile temperature 

measurement

 unaffected radiation

 low lateral temperature variation 

under 1000W/m² steady state

 Universal chuck for a wide variety 

of contacting schemes available

M. Glatthaar, J. Hohl-Ebinger, A. Krieg, M. Greif, L. Greco, F. Clement, 
S. Rein, W. Warta, and R. Preu, 25th EUPVSEC. 2010. Valencia, Spain
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Large area back contact solar cells

Calibrated I-V measurements

 Back contact silicon solar cells 

promise high efficiency potential

IBC concept
Interdigitated Back Contact

MWT
Metal Wrap Through
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 1 3 𝐼0 2 3 𝐼0

Large area back contact solar cells

Calibrated I-V measurements

 Back contact silicon solar cells 

promise high efficiency potential

 Require designs with different 

current per pad or busbar for the 

same polarity

IBC concept
Interdigitated Back Contact

MWT
Metal Wrap Through
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 1 3 𝐼0 2 3 𝐼0

Large area back contact solar cells

Calibrated I-V measurements

 Back contact silicon solar cells 

promise high efficiency potential

 Require designs with different 

current per pad or busbar for the 

same polarity

 Contact resistances can lead 

to non-negligible potential 

inhomogeneities during I-V 

measurement

FF measurement errors [1] 

IBC concept
Interdigitated Back Contact

MWT
Metal Wrap Through

Rcontact

[1] C. Schinke et al., 10.1109/JPHOTOV.2012.2195637

terminal
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 1 3 𝐼0 2 3 𝐼0

Large area back contact solar cells

Calibrated I-V measurements

 Balancing resistors [1]

 Dominating contact and external 

circuit resistance

 Adjusted so that voltage drop from 

terminal to pad/busbar is equal for 

all contact points

BJBC concept
Interdigitated Back Contact

MWT
Metal Wrap Through

Rcontact

Rbalancea b

terminal

[1] R. Sinton, bifi PV workshop, Konstanz, 2012 
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Large area back contact solar cells

Calibrated I-V measurements

 Balancing resistors [1]

 Dominating contact and external 

circuit resistance

 Adjusted so that voltage drop from 

terminal to pad/busbar is equal for 

all contact points

 Tested for different resistor balancing 

configurations and voltage sensing 

schemes [2]

 cell with IBB1 = IBB3 =  ½  IBB2

[1] R. Sinton, bifi PV workshop, Konstanz, 2012 
[2] I. Geisemeyer et al., EUPVSEC 2014, Amsterdam
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Large area back contact solar cells

Calibrated I-V measurements

 I-V simulations and measurements 

for different V sensing schemes[1]

 Dominating but equal balancing 

resistors of 0.1 Ω

 FF underestimation of 12%abs

overestimation of 3.5%abs

Cell with 25.0 % efficiency 

measured as 26.0%!

[1] I. Geisemeyer et al., EUPVSEC 2014, Amsterdam

Simulation Experiment
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Large area back contact solar cells

Calibrated I-V measurements

 I-V simulations and measurements 

for different V sensing schemes[1]

 Dominating but equal balancing 

resistors of 0.1 Ω

 FF underestimation of 12%abs

overestimation of 3.5%abs

Cell with 25.0% efficiency 

measured as 26.0%!

 Only with adjusted balancing 

resistors

 applied voltage equal at all 

contacting points

 sense contacting scheme 

does not influence FF

Simulation Experiment

[1] I. Geisemeyer et al., EUPVSEC 2014, Amsterdam
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Organic PV Devices (OPV): Physical properties
Fundamentally different from conv. inorganic PV devices



©  Fraunhofer ISE 

47

Dye Sensitized Solar Cells – Principle
Example: Conv. liquid electrolyte cell

S. Glunz, IMTEC, 2013
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Dye Sensitized to Perovskite Solar Cells – Principle
Mesoporous Conductor

S. Glunz, IMTEC, 2013

 Strong efficiency gain with Perovskite as dye

 Perovskite cell works also with non-conducting (Al2O3) mesoporous
and planar layer

 Key: Blocking layers to separate electron-hole pairs
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Time dependence effects in DSSC measurements
Hysteresis of IV measurements on Perovskite cells

 Previously: IV of DSSC correct if 
measured slowly

 Conv. DSSC with perovskite absorber: 
behaves similar (Dualeh et al. 2013)
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Time dependence effects in DSSC measurements
Hysteresis of IV measurements on Perovskite cells

 Previously: IV of DSSC correct if 
measured slow

 Conv. DSSC with perovskite absorber: 
behaves similar (Dualeh et al. 2013)

 Different types of hysteresis reported 
with strong dependence on 
architecture of perovskite cell 
(Snaith et al. 2014)

Planar structure
Snaith et al. J. Phys. Chem. Lett. 2014
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Time dependence effects in DSSC measurements
Hysteresis of IV measurements on Perovskite cells

 Previously: IV of DSSC correct if 
measured slow

 Conv. DSSC with perovskite absorber: 
behaves similar (Dualeh et al. 2013)

 Different types of hysteresis reported 
with strong dependence on 
architecture of perovskite cell 
(Snaith et al. 2014)

MSSC (with mesoporous Al2O3)
Snaith et al. J. Phys. Chem. Lett. 2014
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Organic PV devices (OPV): Principle
Example: Polymer Cell

S. Glunz, IMTEC, 2013 Photon creates exciton –
excitonic solar cell
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Organic PV Decvices (OPV) – Principle
Example: Polymer Cell

S. Glunz, IMTEC, 2013
Bulk heterojunction structure

Charge transfer
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Organic PV Devices (OPV): Principle
Variants

 Absorber polymer – solution processed, e.g. by printing

 Room temperature process, high speed

 Absorber small molecules – vacuum sublimation

 High purity

 Allows complex 
structures 

M. Riede, DPG Dresden, 2011
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Organic solar cells: Principle
Development Directions

 Absorber polymer – solution processed, e.g. by printing

 Room temperature process, high speed

 Absorber small molecules – vacuum sublimation

 High purity

 Allows complex 
structures

 Multi-junction cells:

Path to competitive 
efficiencies
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Outline

 Accurate performance measures: 
Why are they needed and how can they be realized?

 Highly efficient silicon solar cells with low complexity

 Summary of future developments

 Challenges for performance measurements: 
Bifaciality, contacting

 Emerging technologies and their measurement challenges

 Perovskite cells

 Multi-junction cells

 III-V concentrator cells

 Organic cells

Thin film technologies (CdTe, CIGS, a-Si…) not discussed
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Calibration of Multi-Junction Cells
III-V (Concentrator) Devices

2014:  SOITEC SOLAR  
builds a 300 MW CPV 
installation, using the
new 150 MWp/yr factory
near San Diego, CA!

Advantage of Two-Axis Tracking in CPV: Land Use
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Calibration of Multi-Junction Cells
High Demand on Measurement Technique

 Internal series connection

 Individual subcells not accessible directly

 Principle of current limitation:

  
i

iMJiMJ VVIMinIGe

GaInAs

GaInP
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Calibration of Multi-Junction Cells
Spectral Response Measurement

middle-cell

top-cell

filtered bias lamps

bottom-cell

chopped

monochromatic

light

I-V-converter

bias voltage
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 Adjust so that each cell delivers STC-current

 Settings calculated from spectral response of 
each junction 

Calibration of Multi-junction devices
IV measurement at Multi-Source-Simulator (MuSim)
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 dEsrdesrAdesrA refsimsim   )()()()()( 2
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Six Source Sun Simulator X-Sim
Spectral Correction

AlGaInP 2.2 eV

GaInP 1.9 eV

AlGaAs 1.6 eV

GaInAs 1.4 eV

GaInNAs 1.1 eV

Ge   0.7 eV

iTC

ref

iTC

sim jj ,, 
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Six Source Sun Simulator X-Sim
Simulator Spectrum

 Reference 
spectrum AM0

 Sum of spectra
of all LCs in the 
measurement plane
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Calibration of Organic multi-junction devices
Spectral Response Measurement

 Bias irradiation dependence

 Spectral overlap of absorbers: identification of artifacts difficult

 Irradiation dependence of limiting cell hard to determine

 Knowledge of corresponding single cells needed
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Calibration of Organic Multi-Junction Devices
Spectral Response Measurement

 Bias voltage dependencies

 Bias voltage dependence due to field assisted charge separation

 Bias voltage variation at actual bias light conditions for uncertainty 
estimation 
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How to Assure International Comparability?
Calibration Labs Accredited to ISO 17025

 Comparable IV-curve parameters important competition measure

 Key: Traceability to SI-units

 Assured by calibration labs accredited according to ISO 17025

 extensive, audited uncertainty calculation

 regular proficiency test: inter-comparison
with other calibration labs (NREL, AIST, JRC, KIER?)

 Test labs can also have accreditation to ISO 17025, but

 do not need to implement uncertainty calculations

 do not necessarily assure traceability of measured results to SI-units
and international comparability
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Summary

 Future prospect of silicon solar cells: 
High efficiency cells with low complexity

 Rear contacted and bifacial cells will play an increasing role

 Agreed way how to valuate the gain of bifaciality urgently needed

 Faulty contacting of rear contacted cells can lead to marked errors

 Perovskite cells: Metastability has enormous influence on IV-results

 Multi-junction cells: Strong expertise available, but challenges high 
especially for organic devices
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Thank You for Your Attention!

Wilhelm Warta
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