

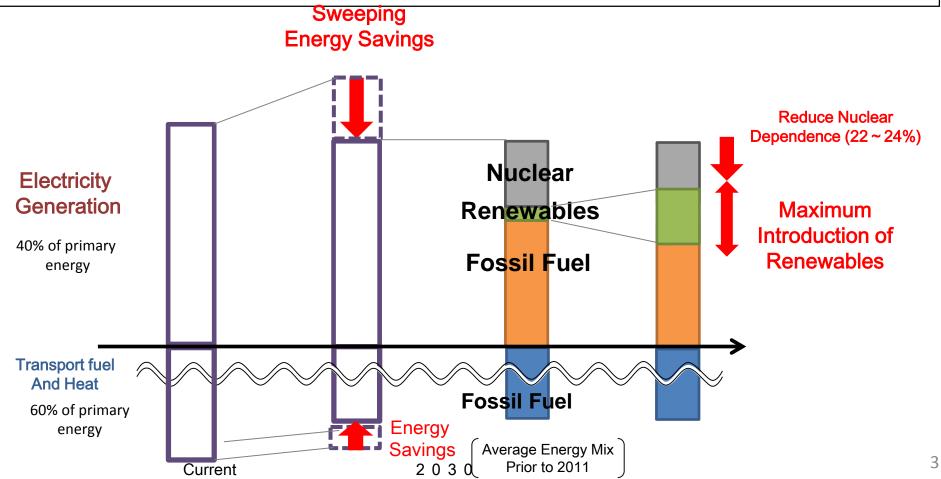
Japanese New Low-Carbon Energy Strategy under the New Climate Change Regime

September 2nd, 2016 *KEEI 30th Anniversary International Conference*

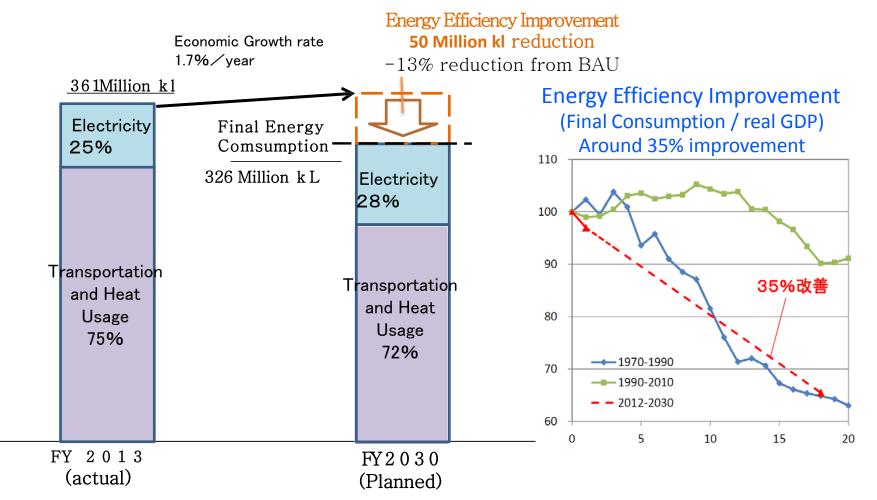
Akihiro Kuroki Managing Director

Emission of 1.042 Billion t-CO2 in FY 2030

= 26% reduction from FT2013 and 25.4% reduction from FY2005


Energy related CO2 emission reduction, 24.9% from FY 2013 and 24.0% from FY 2005

	Estimated emissions of each sector in FY 2030	FY 2013 (FY 2005)
Energy originated	927	1,235 (1,219)
CO_2		
Industry	401	429 (457)
Commercial and	168	279 (239)
other		
Residential	122	201 (180)
Transport	163	225 (240)
Energy conversion	73	101 (104)



- <u>Sweeping energy savings</u>, <u>maximum introduction of renewable</u> and improvement of thermal efficiency at power generation to reduce nuclear dependence
- Maximum introduction of renewable at minimum consumers' burden

Measures and Energy Saving Potential by Sector

Achieve 50.3 million kL of energy savings by 2030 with the various measures deployed across the sector

Industry < 10.42 million kL>

- Energy-intensive industry (iron/steel, chemical, cement, paper/pulp)
 - Voluntary agreement
- •Energy management
 - IT technology and energy management
- Innovative technology
 - COURSE50 (CO₂ Ultimate Reduction in Steelmaking process by Innovative technology for cool Earth 50)
 - Use of CO2 as feedstock

Advanced EE technology

boiler, cogeneration

Transport < 16.07 million kL>

- Next generation vehicles, fuel economy improvement
 - next generation vehicles to represent 1unit /2units
 - more than 100,000 fuel cell vehicles to be sold annually
- Traffic stream management

Commercial < 12.26 million kL>

- Building EE improvement
 - Large-scale buildings' compliance on EE standards
- •LED and OEL diffusion
- •BEMS and energy management
 - half of buildings to install BEMS

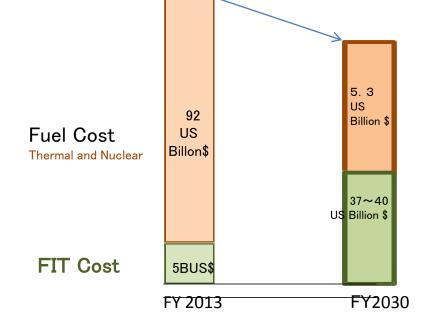
Awareness promotion

Residential < 11.60 million kL>

- Building EE improvement
 - Residential buildings' compliance on EE standards after 2020
- LED and OEL diffusion
- HEMS and Energy management
 - all residential households to introduce the system
- •Awareness promotion

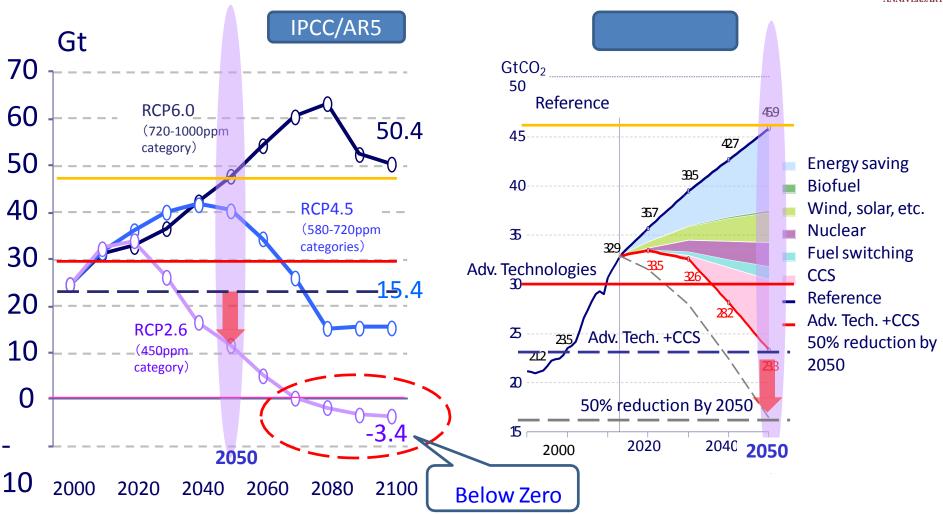
Power Supply configuration (Power Generation GWh)

	FY2030		
Oil	315	3%	
Coal	2,810	26%	
LNG	2,845	27%	
Nuclear	2,317 ~ 2,168	22~20%	
Renewables	2,366 ~ 2,515	22 ~ 24%	
Total	10,650	100%	


Solar	749	7.0%
Wind	182	1.7%
Geothermal	102~113	1.0~1.1%
Hydro	939 ~ 981	8.8 ~ 9.2%
Biomass	394 ~ 490	3.7 ~ 4.6%

FY 2 0 3 010 years average Before Fukushima				
LNG27%		LNG27%		
Coal26%		Coal 24%		
Oil 3%		Oil12%		
Renewable 22~24%		Renewable 11%		
Nuclear 22~20%		Nuclear 27%		

FIT is major tool to enhance Renewables but it is costly



	Power Generation	FIT Cost US Billions \$
Geothermal	10.2~11.3TWh	1.7~2.0
Hydro	93.9~98.1TWh	1.9~2.9
Biomass	39.4∼49.0TWh	6.3~8.3
(sub-total)	143.5~158.4TWh	10.0~13.1
Wind	18.2TWh	4.2
Solar	74.9TWh	23.0
(sub-total)	93.1TWh	27.2
(Total)	236.6~251.5TWh	37.2~40.4

Comparison of CO2 Emission Pass between AR5 and IEEJ Outlook

Calculated using MAGICC 6.0 Meinshausen, M., S. C. B. Raper and T. M. L. Wigley (2011). "Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6: Part I – Model Description and Calibration." Atmospheric Chemistry and Physics 11: 1417-1456.

IEEJ: Asia/World Energy Outlook 2015

IPCC Report	Published in	Climate sensitivity	Best estimate
1 st Assessment R.	1990	1.5 - 4.5 °C	2.5 °C
2 nd Assessment R.	1995	1.5 – 4.5 °C	2.5 °C
3 rd Assessment R.	2001	1.5 – 4.5 °C	2.5 °C
4 th Assessment R.	2007	2.0 - 4.5 °C	3.0 °C
5 th Assessment R.	2014	1.5 - 4.5 °C	Not shown

Although no consensus about climate sensitivity within WG1/AR5, WG3/AR5 used 3.0°C as climate sensitivity to conduct analysis

RCP Scenario	Concentration of GHG		Overshoot of	Temperature Increase at the end of 21 st Century	
			Concentration of GHG	10%~90%Confidencial	Possibility of below 2°C
RCP2.6	450ppm (430–480ppm)		0	1.5−1.7℃ (1.0-2.8℃)	66%-100%
	500ppm (480–530ppm)		×	1.7−1.9°C (1.2-2.9°C)	50%-100%
New Scenario added by			0	1.8−2.0 °C (1.2-3.3°C)	33%-66%
IPCC WG3	550ppm (530–580ppm)		×	2.0−2.2 °C (1.4−3.6°C)	
			0	2.1−2.3 °C (1.4−3.6°C)	0%-50%
RCP4.5	580-720ppm 580-650ppm 650-720ppm	580-650ppm	×	2.3−2.6 °C (1.5−4.2 °C)	
			2.6−2.9 °C (1.8−4.5 °C)	Below 33%	
RCP6.0	720-1000ppm			3.1−3.7 °C (2.1−5.8 °C)	Delow 33%

	Climate Sensitivity $2.5^\circ C$ Case				
			Overshoot of Concentration of GHG	Temperature Rise at the end of 21 st Century	
RCP Scenario Concentrati		ation of GHG		10%~90%Confidencial	Possibility of below 2°C
RCP2.6	450ppm (430–480ppm)		0	1.3−1.4 °C (0.8−2.3°C)	
	500ppm (480–530ppm)		×	1.4−1.6 °C (1.0-2.7°C)	66%-100%
New Scenario added by IPCC WG3			0	1.5−1.7 °C (1.0-2.8°C)	
IPCC WG3		×	1.7−1.8 °C (1.2−3.0 °C)	50%-100%	
	550ppm (530–580ppm)		0	1.8−1.9 °C (1.2 - 3.0°C)	33%-66%
RCP4.5	580-720ppm 580-650ppm 650-720ppm	580-650ppm	×	1.9−2.2 °C (1.3-3.5 °C)	- 0%-50%
		650-720ppm	×	2.2−2.4 °C (1.5−3.8°C)	
RCP6.0	720-1000ppm		×	2.6−3 .1 °C (1.8−4.8 °C)	Below 33%

- 1. New Japanese Energy Plan is ambitious but not impossible even it is not easy to apply.
- 2. Most probably Japan need new tool to realize its energy plan and NDC.
- 3. In case climate sensitivity is below 3℃、 IEEJ's Advanced Scenario could be one solution to maintain global temperature below 2℃, although it is also very ambitious plan.

Thank you for your attention.

ANNIVERSARY

IEEJ was evaluated as the world's number 1 in the **energy sector** of the "**Global Go To Think Tank Index**" (published in Jan. 2016) announced every year by the University of Pennsylvania. IEEJ has been ranked top for two years in a row in Asia.

Since the start of the survey, it is the first time for a non-U.S./European research institute to be chosen as the top in the world ranking, based on research field.

(IEEJ was ranked third in the world, and top in Asia, in the 2014 index.)

Unauthorized reproduction prohibited (C) 2016 IEEJ, All rights reserved

"2015 Global Go To Think Tank Index Report"(p.83)

http://repository.upenn.edu /think_tanks/ We provide part of our cutting-edge research results on energy and the environment on our website free of charge.

Mapping

IEEJ will celebrate its 50th

anniversary in June of this year.

h the Energy Future

IEEJ Website http://eneken.ieej.or.jp/en

Contact :report@tky.ieej.or.jp