
2019년 연구성과 발표회



# 재생에너지 발전비중 확대에 따른 유연성 설비의 경제성 분석

2019년 2월 29일

장희선 조주현



#### 차례

- 1. 연구의 배경 및 목적
- 2. 2030년 유연성 부족량 산정
- 3. 유연성설비 경제성 분석
- 4. 유연성자원 확보 및 경제적 활용 방안



# 1. 연구의 배경 및 목적



#### 연구의 배경

- □ 2017년 출범한 새 정부는 에너지전환 로드맵('17.10월), 제8차 전력수급기본계획 ('17.12월), 제3차 에너지기본계획('18.10월) 등을 통해 원자력의 단계적 감축과 재생에너지 확대를 기반으로 한 에너지정책의 새로운 방향을 제시하였음.
  - 제8차 수급계획의 목표시나리오에 따르면 2017년 전원구성은 발전량 기준 원자력과 석탄이 약 76%, 가스와 신재생이 23%를 차지하였으나, 2030년 원자력과 석탄의 비중은 60%로 감소하고 가스와 신재생의 비중이 39%로 확대될 전망
  - 특히, 신규로 보급되는 재생에너지 설비용량 48.7GW의 97%를 풍력과 태양광으로 공급할 계획



#### 연구의 배경

- □ 풍력과 태양광은 각각 풍속과 일사량의 자연조건에 의존하여 발전하는 특성으로 불확실성이 큰 변동적 신재생에너지(variable renewable energy)로 분류
  - 자연조건에 따라 발전량이 불규칙적으로 변하므로 발전량을 예측하기 어려우며 변동성이 높은 특징을 가짐.
- □ 풍력과 태양광이 높은 수준으로 전력계통에 투입될 경우, 전력수급 균형을 유지하기 위해 발전과 부하를 조절하는 능력을 의미하는 전력계통의 유연성이 저해될 수 있음.
- □ 즉, 수요 변동성만을 대비하던 전력계통이 발전 변동성도 대응하게 되어 기존의 유연 성자원만으로는 전력수급의 균형을 맞추는 것이 어려워질 수 있음.
- □ 유연성자원에는 높은 출력 증·감발율을 가진 유연성설비, 수요반응, 에너지저장장치 등이 있나, 아직까지는 유연성설비가 전력계통의 유연성에 대응하는 주요 요인으로 볼 수 있음.

5-



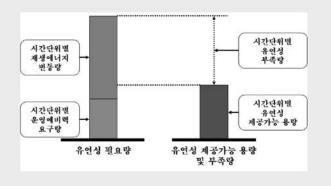
#### 연구의 목적

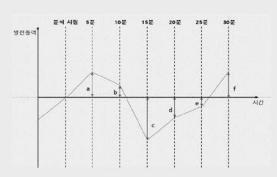
- □ 본 연구는 크게 세 부분으로 구성
  - 신재생 보급 확대에 따른 2030년 국내 전력계통의 유연성 설비 부족량 산정
  - 전원구성과 시장상황의 변화가 유연성설비의 상대적 경제성에 미치는 영향을 분석
  - 유연성자원 확보 및 경제적 활용을 위한 방안 제시

#### 주요 연구결과

- □ 2030년 국내 계통의 유연성 부족량 산정 결과, 수요반응자원 및 에너지저장장치를 고려하지 않은 경우 신재생 확대에 대응하기 위해 60분~120분 이내 출력을 내야하는 설비가 현행 운영예비력에 더하여 약 1,800MW 추가적으로 필요한 것으로 추정
- □ LNG의 한계비용 추정치와 양수의 정산단가를 비교한 결과, LNG 한계비용 200원 /kWh 내외에서 LNG와 양수의 경제성이 교차하는 것으로 분석
  - 최근 수년간의 LNG 연료가격 추세를 볼 때 경제성 면에서는 LNG가 양수에 비해 우수
- □ 유연성자원 확보 및 경제적 활용을 위한 제언
  - 현재 복합화력으로 운영 중인 가스터빈에 Bypass Stacks를 설치하여 유연성자원으로 활용하고, 이에 대한 비용을 보상할 목적으로 용량요금 정산에 계통안정도에 기여하는 요소를 반영
  - 제8차 전력수급계획에 따라 2028년부터 가변속양수를 활용하게 되면 수요가 적은 기저부하 시간대의 유연성이 향상되기에, 기저부하 시간대의 유연성 기여 측면을 고려한 가변속양수의 예비력 정산단가 조정을 제안







## 2. 2030년 유연성 부족량 산정



#### 2030년 유연성 부족량 산정

- □ 전력계통내 시간대별 신재생 변동량과 운영예비력 요구량에서 유연성 제공가능용량을 제하여 유연성 부족량을 산정
- □ 보수적인 관점에서 태양광과 풍력의 최대변동률, 전력수요 등의 전제치를 산정





에너지경제연구원

- 9 -

#### 2030년 유연성 부족량 산정

- □ 재생에너지의 최대변동률
  - 10분 30분 시간대의 최대변동률은 풍력이 크게 나타났으며, 60분 120분 시간대의 최대변동률은 태양광이 크게 나타남.
  - 일몰 및 일출시간대에 태양광발전이 빠르게 증가하고 감소하기 때문인 것으로 판단

| 시간 단위 | 풍력 최대 변동률[%] | 태양광 최대 변동률[%] |
|-------|--------------|---------------|
| 10분   | 16           | 8             |
| 30분   | 18           | 15            |
| 60분   | 23           | 30            |
| 120분  | 31           | 52            |

- □ 전력수요 및 재생에너지 발전량
  - 최대수요일 때 많은 발전기가 가동 중이므로 유연성 제공량이 많아지며, 최저수요일 때는 주로 새벽시간으로 태양광발전량이 매우 낮아 변동성 역시 낮으므로 평균수요를 전제
  - 재생에너지의 발전량이 클수록 변동률도 높아지므로 최대발전을 전제

에너지경제연구원

- 10 -

#### 2030년 유연성 부족량 산정

- □ 운영예비력 기준
  - 2018년 6월 신뢰도 고시 일부개정안에 따라 운영예비력 기준이 개정
  - 평상시 안정적 주파수 유지를 위한 주파수제어예비력과 주파수회복예비력으로 구분
  - 주파수제어예비력은 AGC운전을 통해 5분 이내 응동 30분 이상 지속할 수 있는 예비력이며, 주파수회복예비력은 1차·2차·3차예비력으로 구분
  - 이와 별도로 20분 이내 응동 4시간 이상 출력을 유지할 수 있는 속응성자원 2,000MW 신설

| 운영예비력 기준 | 확보량[MW] | 확보 시간 기준               |
|----------|---------|------------------------|
| -파수제어예비력 | 700     | 5분 이내 응동<br>30분 이상 출력  |
| 1차예비력    | 1,000   | 10초 이내 응동<br>5분 이상 출력  |
| 2차예비력    | 1,400   | 10분 이내 응동<br>30분 이상 출력 |
| 3차예비력    | 1,400   | 30분 이내 확보              |

11 -



#### 2030년 유연성 부족량 산정

- □ Merit Order 기반 급전
  - Merit Order를 기반으로 하되 수도권 열 제약 해소를 위하여 원자력, LNG(수도권 열 제약 해소), 석탄, LNG 순으로 급전을 수행
  - 또한 석탄 및 LNG 최대발전용량의 95% 운전점에서 추가적으로 감발을 하여 석탄은 89%, LNG 는 79% 운전점에서 발전하여 유연성 부족량을 산정
- □ 산정결과, 수요반응과 에너지저장장치를 고려하지 않은 경우 2030년 국내 전력계통 의 120분 시간단위에서 약 1,800MW의 유연성 부족량이 추정
  - 다만, 수요반응자원과 에너지저장장치를 이용하여 추가 유연성을 제공하거나 LNG의 운전점을 조정할 경우 120분대 유연성 부족량도 대응 가능
  - 5분 이하 재생에너지 변동성 및 계통 주파수 안정도 제약은 고려하지 않음.

| 단위: MW                    | 10분   | 30분    | 60분    | 120분   |  |
|---------------------------|-------|--------|--------|--------|--|
| 신재생 최대변동량                 | 5,510 | 8,211  | 13,947 | 22,067 |  |
| 운영예비력 요구량(안)(속응성자원 별도 확보) | 3,100 | 4,500  | 4,500  | 4,500  |  |
| 유연성 제공가능 용량               | 9,326 | 13,109 | 18,951 | 24,723 |  |
| 유연성 부족량                   | 0     | 0      | 0      | 1,844  |  |

에너지경제연구원 Rows Exergy Ecosonics Institute

- 12 -

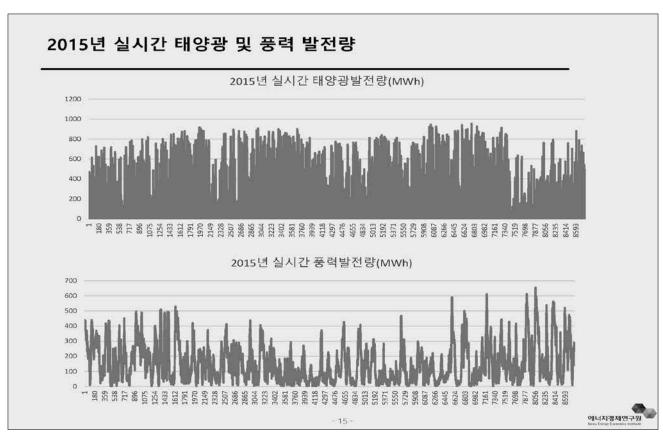


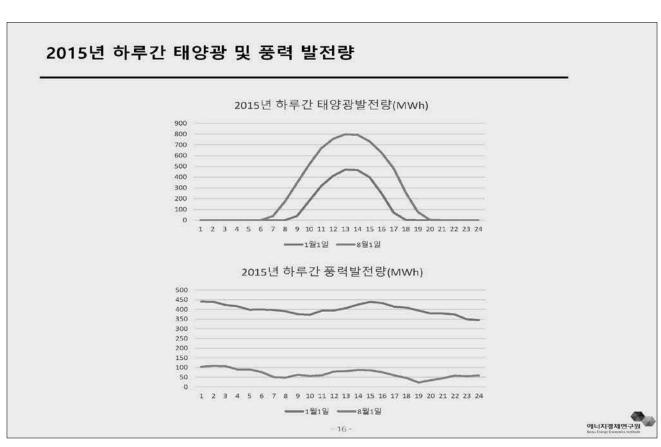
# 3. 유연성설비의 경제성 분석

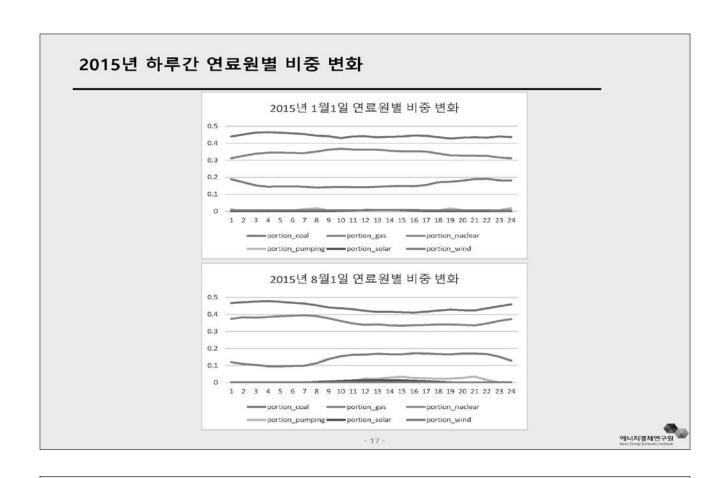


#### 유연성설비의 경제성 분석

□ De Loecker and Warzynski(2012)의 한계비용 추정방법을 국내 전력계통에 적용하여 신재생 보급 확대에 따른 유연성설비의 경제성을 분석


$$L(M_{it},K_{it},\lambda_{it}) = P_{it}^M M_{it} + P_{it}^K K_{it} + \lambda_{it} \left( Q_{it} - Q_{it}(M_{it},K_{it},\Gamma_{it},\omega_{it}) \right)$$


□ 비용최소화 문제를 풀면 연료탄력성과 시장에서의 연료가격, 연료사용량, 그리고 발전량과 한계 비용 간의 관계를 얻을 수 있음.

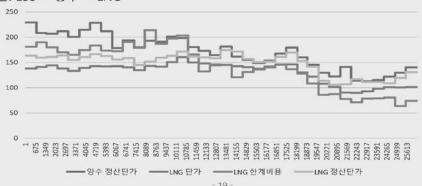

$$\lambda_{it} = \frac{1}{\theta_{it}^M} \frac{P_{it}^M M_{it}}{Q_{it}}$$

□ 태양광과 풍력의 보급 확대가 유연성설비의 한계비용에 미치는 영향은 다음과 같이 추정

$$\ln \lambda_{it} = \alpha_0 + \alpha_1 p_{it}^m + \alpha_2 q_{it} + \ln \Gamma_t \beta + \nu_t + \epsilon_{it}$$








### LNG 한계비용 추정결과

|                         |               | 종속박                     | 변수: 사               |
|-------------------------|---------------|-------------------------|---------------------|
|                         |               | 추정계수                    | 탄력성                 |
| 가스가격( p <sub>it</sub> ) |               | 0.78**<br>(0.008)       | 0.72**<br>(0.007)   |
| 가스발전량(및)                |               | 0.002**<br>(0.0001)     | 0.22**<br>(0.009)   |
| r,                      | 발전량-석탄        | -0.002**<br>(0.0001)    | -0.32**<br>(0.01)   |
|                         | 발전량-원자력       | -0.001 * *<br>(0.0001)  | -0.23**<br>(0.01)   |
|                         | 발전량-태양광·풍력    | 0.0009*<br>(0.0004)     | 0.001 *<br>(0.0008) |
|                         | 발전량-양수        | 0.001 **<br>(0.0001)    | 0.005**<br>(0.0006  |
|                         | 발전량-전체        | -0.001 * *<br>(0.00009) | -0.64**<br>(0.03)   |
| ν                       | Fixed effects |                         |                     |
|                         | Year          | Yes                     |                     |
|                         | Month         | Yes                     |                     |
|                         | Hour          | Yes                     |                     |
| Adj R2                  |               | 0.94                    |                     |
| 관측치(개)                  |               | 26280                   |                     |

#### LNG 한계비용 추정결과 및 양수 정산단가 비교

- □ LNG 한계비용 200원/kWh 내외에서 양수와 LNG 발전의 경제성이 교차
  - 지난 몇년간의 LNG 연료가격 추세를 볼 때 경제성 면에서는 LNG가 양수보다 우수
- □ 다만, 실제 유연성설비의 구성은 경제성 뿐만 아니라 각 유연성설비의 기술적 특성, 송전망 건설 및 입지 문제 등을 종합적으로 고려해야 함.
  - 경제성: LNG > 양수 > ESS
  - 출력증감발률: ESS > 양수 > LNG
  - 기동시간: ESS > 양수 > LNG





#### 유연성설비의 경제성 분석

- □ 또한 본 연구의 결과는 현재 우리나라의 태양광과 풍력의 비중이 약 1.7% 수준으로 매우 낮다는 한계 내에서 해석할 필요가 있으며, 향후 상황 변화에 따라 경제성 분석 결과는 달라질 수 있음.
  - 예를 들어, 향후 태양광이 높은 비중으로 확대될 때 낮 시간 남는 태양광으로 양수를 저장하여 저녁 시간에 전력 수요가 증가할 때 양수를 활용할 경우 양수의 경제성은 상승할 뿐만 아니라 수급조절의 기능도 확대될 것으로 전망됨.





## 4. 유연성설비 확보 및 경제적 활용 방안



#### 유연성설비 확보 및 경제적 활용 방안

- □ 복합화력의 가스터빈 단독운전을 위한 설비 확보
  - 60분~120분 내 투입이 가능한 설비는 현실적으로 가스터빈인데, 우리나라는 효율성을 강화하기 위해 가스터빈에 스팀터빈을 연결한 복합화력을 주로 사용하고 있음.
  - 이에 따라 기존 복합화력 일부분을 가스터빈 단독운전이 가능하도록 Bypass Stacks를 설치하고, 이에 대한 보상방안으로서 Bypass Stacks 설치지원계수를 고정비 보상요소인 용량요금 정산요 소에 적용하는 방안을 고려할 수 있음.
- □ 가변속양수발전 관련 제도개선
  - 제8차 전력수급계획에서 유연성 제고의 목적으로 활용될 것으로, 기저부하 시간대에 기존의 가 스 혹은 석탄발전이 제공하는 주파수조정예비력을 일정부분 대체할 수 있을 것으로 기대
  - 그러나 가변속양수발전이 추가 예비력을 공급하여 얻게 될 수익이 크지 않을 것으로 예상되어, 현재와 같이 양수발전에 용량요금을 조정하여 지급하는 방안과는 다른 방안을 모색해야 함

