
교양도서ITエンジニアのための機械学習理論入門
(IT 엔지니어를 위한) 머신러닝 이론 입문
- 발행사항
- 파주 : 위키북스, 2016
- 형태사항
- xxvii, 258 p. : 삽화, 도표 ; 24 cm
- 총서사항
- 데이터 사이언스 시리즈 ; 001
- 서지주기
- 참고문헌(p. 249-251)과 색인수록
- 주제명
- 기계 학습[機械學習]
소장정보
위치 | 등록번호 | 청구기호 / 출력 | 상태 | 반납예정일 |
---|---|---|---|---|
이용 가능 (1) | ||||
연구외도서 | G101027 | 대출가능 | - |
이용 가능 (1)
- 등록번호
- G101027
- 상태/반납예정일
- 대출가능
- -
- 위치/청구기호(출력)
- 연구외도서
책 소개
머신러닝의 바탕이 되는 데이터 사이언스의 본질을 이해하자!
현재 화제가 되고 있는 머신러닝(기계학습)의 툴과 라이브러리는 내부에서 어떻게 계산을 하는 걸까? 계산해서 얻은 결과는 어떤 의미를 담고 있을까? 그 결과를 어떻게 비즈니스적으로 활용하면 좋을까? 이런 의문을 가진 엔지니어가 늘고 있습니다.
이 책은 IT 개발자 중에서 머신러닝 알고리즘을 공부하고 싶어하며 그 알고리즘 속에 포함된 이론을 이해하여 업무에 활용하고 싶어하는 독자를 대상으로 쓰여졌습니다. 머신러닝 기술은 여러모로 활용되겠지만 이 책은 '데이터 분석 결과를 업무 판단에 이용한다'라는 개념을 가지고 각종 알고리즘을 설명합니다.
알고리즘의 이해를 위해 이 책에서는 머신러닝 이론을 수학적인 배경부터 하나씩 차근차근 설명합니다. 또 파이썬으로 샘플 프로그램을 실행해 볼 수 있도록 하였으며, 그 결과를 보는 것으로 머신러닝을 지탱하는 이론을 실감할 수 있도록 구성돼 있습니다.
현재 화제가 되고 있는 머신러닝(기계학습)의 툴과 라이브러리는 내부에서 어떻게 계산을 하는 걸까? 계산해서 얻은 결과는 어떤 의미를 담고 있을까? 그 결과를 어떻게 비즈니스적으로 활용하면 좋을까? 이런 의문을 가진 엔지니어가 늘고 있습니다.
이 책은 IT 개발자 중에서 머신러닝 알고리즘을 공부하고 싶어하며 그 알고리즘 속에 포함된 이론을 이해하여 업무에 활용하고 싶어하는 독자를 대상으로 쓰여졌습니다. 머신러닝 기술은 여러모로 활용되겠지만 이 책은 '데이터 분석 결과를 업무 판단에 이용한다'라는 개념을 가지고 각종 알고리즘을 설명합니다.
알고리즘의 이해를 위해 이 책에서는 머신러닝 이론을 수학적인 배경부터 하나씩 차근차근 설명합니다. 또 파이썬으로 샘플 프로그램을 실행해 볼 수 있도록 하였으며, 그 결과를 보는 것으로 머신러닝을 지탱하는 이론을 실감할 수 있도록 구성돼 있습니다.
목차
▣ 01장: 데이터 과학과 머신러닝
1.1 업무상에서 데이터 과학이 하는 역할
1.2 머신러닝 알고리즘 분류
___1.2.1 분류: 클래스 판정을 산출하는 알고리즘
___1.2.2 회귀분석: 수치를 예측하는 알고리즘
___1.2.3 클러스터링: 지도자 없이 그룹화하는 알고리즘
___1.2.4 그 밖의 알고리즘
1.3 이 책에서 사용하는 예제
___1.3.1 회귀분석에 의한 관측값 추측
___1.3.2 선형판별에 의한 신규 데이터 분류
___1.3.3 이미지 파일 감색 처리(대표색 추출)
___1.3.4 손글씨 문자 인식
1.4 분석 도구 준비
___1.4.1 이 책에서 사용할 데이터 분석 도구
___1.4.2 실행 환경 설치 순서(CentOS 6)
___1.4.3 실행 환경 설치 순서(Mac OS X)
___1.4.4 실행 환경 설정 순서(Windows 7/8.1)
___1.4.5 IPython 사용법
▣ 02장: 최소제곱법 - 머신러닝 이론의 첫 걸음
2.1 다항식 근사와 최소제곱법에 의한 추정
___2.1.1 트레이닝 세트의 특징 변수와 목적 변수
___2.1.2 다항식 근사와 오차함수 설정
___2.1.3 오차함수를 최소화할 수 있는 조건
___2.1.4 예제 코드로 확인한다
___2.1.5 통계모델이라는 관점에서 최소제곱법이란
2.2 오버 피팅 검출
___2.2.1 트레이닝 셋과 테스트 셋
___2.2.2 테스트 셋으로 검증한 결과
___2.2.3 교차 검증을 통해 일반화 능력을 검증한다
___2.2.4 데이터 개수에 따른 오버 피팅 변화
2.3 부록 - 헤세행렬의 성질
▣ 03장: 최우추정법 - 확률을 사용한 추정 이론
3.1 확률 모델을 이용한다
___3.1.1 데이터 발생 확률 설정
___3.1.2 우도함수로 파라미터를 평가한다
___3.1.3 예제 코드로 확인한다
3.2 단순한 예로 설명한다
___3.2.1 정규분포의 파라메트릭 모델
___3.2.2 예제 코드로 확인한다
___3.2.3 추정량을 평가하는 방법(일치성과 불편성)
3.3 부록-표본평균ㆍ표본분산의 일치성과 불편성
___3.3.1 표본평균ㆍ표본분산의 일치성과 불편성 증명
___3.3.2 예제 코드로 확인한다
▣ 04장: 퍼셉트론 - 분류 알고리즘 기초
4.1 확률적 기울기 하강법 알고리즘
___4.1.1 평면을 분할하는 직선의 방정식
___4.1.2 오차함수를 사용하여 분류 결과를 평가한다
___4.1.3 기울기 벡터로 파라미터를 수정한다
___4.1.4 예제 코드로 확인한다
4.2 퍼셉트론을 기하학적으로 해석한다
___4.2.1 바이어스 항의 임의성과 알고리즘 수렴 속도
___4.2.2 퍼셉트론의 기하학적 해석
___4.2.3 바이어스 항의 기하학적인 의미
▣ 05장: 로지스틱 회귀와 ROC 곡선 - 학습 모델을 평가하는 방법
5.1 분류 문제에 최우추정법을 적용한다
___5.1.1 데이터 발생 확률 설정
___5.1.2 최우추정법으로 파라미터를 결정한다
___5.1.3 예제 코드로 확인한다
5.2 ROC 곡선으로 학습 모델을 평가한다
___5.2.1 로지스틱 회귀를 현실 문제에 적용한다
___5.2.2 ROC 곡선으로 성능 평가
___5.2.3 예제 코드로 확인한다
5.3 부록 - IRLS법 도출
▣ 06장: k-평균법 - 비지도 학습모델 기초
6.1 k-평균법을 통한 클러스터링과 그 응용
___6.1.1 비지도 학습모델 클러스터링
___6.1.2 k-평균법을 사용한 클러스터링
___6.1.3 이미지 데이터에 응용
___6.1.4 예제 코드로 확인한다
___6.1.5 k-평균법의 수학적 근거
6.2 게으른 학습모델로서의 k-최근접이웃
___6.2.1 k-최근접이웃으로 분류
___6.2.2 k-최근접이웃의 문제점
▣ 07장: EM 알고리즘 - 최우추정법에 의한 비지도 학습
7.1 베르누이 분포를 사용한 최우추정법
___7.1.1 손글씨 문자 합성 방법
___7.1.2 이미지 생성기와 최우추정법
7.2 혼합분포를 사용한 최우추정법
___7.2.1 혼합분포로 확률계산
___7.2.2 EM 알고리즘 절차
___7.2.3 예제 코드로 확인한다
___7.2.4 클러스터링으로 데이터를 해석한다
7.3 부록 - 손글씨 문자 데이터를 다운로드한다
▣ 08장: 베이즈 추정 - 데이터를 기반으로 확신을 더하는 방법
8.1 베이즈 추정 모델과 베이즈 정리
___8.1.1 베이즈 추정의 개념
___8.1.2 베이즈 정리 입문
___8.1.3 베이즈 추정으로 정규분포를 정한다: 파라미터 추정
___8.1.4 베이즈 추정으로 정규분포를 결정한다: 관측값의 분포를 추정
___8.1.5 예제 코드로 확인한다
8.2 베이즈 추정을 회귀분석에 응용
___8.2.1 파라미터의 사후분포 계산
___8.2.2 관측값의 분포를 추정
___8.2.3 예제 코드로 확인한다
8.3 부록-최우추정법과 베이즈 추정의 관계