에너지경제연구원 전자도서관

로그인

에너지경제연구원 전자도서관

자료검색

  1. 메인
  2. 자료검색
  3. 통합검색

통합검색

단행본

Machine Learning: A Probabilistic Perspective

발행사항
Cambridge, MA : The MIT Press, 2012
형태사항
xxix, 1067 p. : ill. (some col.) ; 24 cm
서지주기
Includes bibliographical references (p. [1015]-1045) and indexes
소장정보
위치등록번호청구기호 / 출력상태반납예정일
지금 이용 불가 (1)
자료실E207094대출중2025.05.19
지금 이용 불가 (1)
  • 등록번호
    E207094
    상태/반납예정일
    대출중
    2025.05.19
    위치/청구기호(출력)
    자료실
책 소개
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.



Reviews

This comprehensive book should be of great interest to learners and practitioners in the field of machine learning.—British Computer Society

About the Author

Kevin P. Murphy is a Senior Staff Research Scientist at Google Research.

목차
1 Introduction 2 Probability 3 Generative models for discrete data 4 Gaussian models 5 Bayesian statistics 6 Frequentist statistics 7 Linear regression 8 Logistic regression 9 Generalized linear models and the exponential family 10 Directed graphical models (Bayes nets) 11 Mixture models and the EM algorithm 12 Latent linear models 13 Sparse linear models 14 Kernels 15 Gaussian processes 16 Adaptive basis function models 17 Markov and hidden Markov models 18 State space models 19 Undirected graphical models (Markov random fields) 20 Exact inference for graphical models 21 Variational inference 22 More variational inference 23 Monte Carlo inference 24 Markov chain Monte Carlo (MCMC) inference 25 Clustering 26 Graphical model structure learning 27 Latent variable models for discrete data 28 Deep learning Notation Bibliography Indexes
저자 소개
저자 케빈 머피
아일랜드에서 태어났지만 영국에서 자란 케빈 머피는 케임브리지대학교 학사, 펜실베이니아대학교 공학 석사, 버클리대학교 박사를 취득했다. MIT에서의 박사후 과정을 마치고, 2004년부터 2012년까지 캐나다 밴쿠버 브리티시컬럼비아대학교의 컴퓨터과학 및 통계학 부교수로 지냈다. 테뉴어(tenure)를 얻은 뒤, 캘리포니아에 있는 구글에서 안식년을 보냈으며 그곳에서 머물기로 결정했다. 현재 구글 딥마인드에서 생성 모델, 강화학습, 베이즈 추론, 최적화, 로버스트성 및 여러 주제에 대해 연구하고 있는, 26명의 연구자와 엔지니어가 있는 팀...
작가의 다른 작품

알라딘에서 제공한 저자 정보입니다.상세보기

주제어