에너지경제연구원 전자도서관

로그인

에너지경제연구원 전자도서관

자료검색

  1. 메인
  2. 자료검색
  3. 통합검색

통합검색

단행본

Deep learning in time series analysis

형태사항
xi, 195 pages : illustrations (some color) ; 24 cm
서지주기
Includes bibliographical references (pages 173-187) and index
소장정보
위치등록번호청구기호 / 출력상태반납예정일
지금 이용 불가 (1)
자료실E208260대출중2025.07.07
지금 이용 불가 (1)
  • 등록번호
    E208260
    상태/반납예정일
    대출중
    2025.07.07
    위치/청구기호(출력)
    자료실
목차
PREFACE. I-FUNDAMENTALS OF LEARNING. Introduction to Learning. Learning Theory. Pre-processing and Visualisation. II ESSENTIALS OF TIME SERIES ANALYSIS. Basics of Time Series. Multi-Layer Perceptron (MLP) Neural Networks for Time Series Classification. Dynamic Models for Sequential Data Analysis. III DEEP LEARNING APPROACHES TO TIME SERIES CLASSIFICATION. Clustering for Learning at Deep Level. Deep Time Growing Neural Network. Deep Learning of Cyclic Time Series. Hybrid Method for Cyclic Time Series. Recurrent Neural Networks (RNN). Convolutional Neural Networks. Bibliography.