단행본
Deep learning in time series analysis
- 형태사항
- xi, 195 pages : illustrations (some color) ; 24 cm
- 서지주기
- Includes bibliographical references (pages 173-187) and index
소장정보
위치 | 등록번호 | 청구기호 / 출력 | 상태 | 반납예정일 |
---|---|---|---|---|
지금 이용 불가 (1) | ||||
자료실 | E208260 | 대출중 | 2025.07.07 |
지금 이용 불가 (1)
- 등록번호
- E208260
- 상태/반납예정일
- 대출중
- 2025.07.07
- 위치/청구기호(출력)
- 자료실
목차
PREFACE.
I-FUNDAMENTALS OF LEARNING.
Introduction to Learning.
Learning Theory.
Pre-processing and Visualisation.
II ESSENTIALS OF TIME SERIES ANALYSIS.
Basics of Time Series.
Multi-Layer Perceptron (MLP) Neural Networks for Time Series Classification.
Dynamic Models for Sequential Data Analysis.
III DEEP LEARNING APPROACHES TO TIME SERIES CLASSIFICATION.
Clustering for Learning at Deep Level.
Deep Time Growing Neural Network.
Deep Learning of Cyclic Time Series.
Hybrid Method for Cyclic Time Series. Recurrent Neural Networks (RNN).
Convolutional Neural Networks.
Bibliography.