단행본
Deep Learning
- 발행사항
- Cambridge, Massachusetts : The MIT Press, 2016
- 형태사항
- axxii : ill ; 24cm
- 서지주기
- Includes bibliographical references (p. 711-766) and index
소장정보
위치 | 등록번호 | 청구기호 / 출력 | 상태 | 반납예정일 |
---|---|---|---|---|
지금 이용 불가 (1) | ||||
자료실 | E208261 | 대출중 | 2025.07.07 |
지금 이용 불가 (1)
- 등록번호
- E208261
- 상태/반납예정일
- 대출중
- 2025.07.07
- 위치/청구기호(출력)
- 자료실
목차
Applied math and machine learning basics. Linear algebra
Probability and information theory
Numerical computation
Machine learning basics
Deep networks: modern practices. Deep feedforward networks
Regularization for deep learning
Optimization for training deep models
Convolutional networks
Sequence modeling: recurrent and recursive nets
Practical methodology
Applications
Deep learning research. Linear factor models
Autoencoders
Representation learning
Structured probabilistic models for deep learning
Monte Carlo methods
Confronting the partition function
Approximate inference
Deep generative models.