에너지경제연구원 전자도서관

로그인

에너지경제연구원 전자도서관

자료검색

  1. 메인
  2. 자료검색
  3. 통합검색

통합검색

보고서(전자자료)

Deep Learning for Economists

카테고리
국외자료
개인저자
Melissa Dell
발행기관
NBER
발행년월
2024.08
페이지수
53p
URL
요약
Deep learning provides powerful methods to impute structured information from large-scale, unstructured text and image datasets. For example, economists might wish to detect the presence of economic activity in satellite images, or to measure the topics or entities mentioned in social media, the congressional record, or firm filings. This review introduces deep neural networks, covering methods such as classifiers, regression models, generative AI, and embedding models. Applications include classification, document digitization, record linkage, and methods for data exploration in massive scale text and image corpora. When suitable methods are used, deep learning models can be cheap to tune and can scale affordably to problems involving millions or billions of data points.. The review is accompanied by a companion website, EconDL, with user-friendly demo notebooks, software resources, and a knowledge base that provides technical details and additional applications.